题目内容
【题目】春节期间,受烟花爆竹集中燃放影响,我国多数城市空气中浓度快速上升,特别是在大气扩散条件不利的情况下,空气质量在短时间内会迅速恶化年除夕18时和初一2时,国家环保部门对8个城市空气中浓度监测的数据如表单位:微克立方米.
除夕18时浓度 | 初一2时浓度 | |
北京 | 75 | 647 |
天津 | 66 | 400 |
石家庄 | 89 | 375 |
廊坊 | 102 | 399 |
太原 | 46 | 115 |
上海 | 16 | 17 |
南京 | 35 | 44 |
杭州 | 131 | 39 |
Ⅰ求这8个城市除夕18时空气中浓度的平均值;
Ⅱ环保部门发现:除夕18时到初一2时空气中浓度上升不超过100的城市都是“禁止燃放烟花爆竹“的城市,浓度上升超过100的城市都未禁止燃放烟花爆竹从以上8个城市中随机选取3个城市组织专家进行调研,记选到“禁止燃放烟花爆竹”的城市个数为X,求随机变量y的分布列和数学期望;
Ⅲ记2017年除夕18时和初一2时以上8个城市空气中浓度的方差分别为和,比较和的大小关系只需写出结果.
【答案】Ⅰ70;Ⅱ分布列见解析,;.
【解析】
Ⅰ利用平均数的计算公式即可得出8个城市除夕18时空气中浓度的平均值.
以上8个城市中禁止燃放烟花爆竹的有太原,上海,南京,杭州4个城市,
随机变量X的所有可能取值为0,1,2,利用,即可得出分布列,进而得到X的数学期望.
根据数据的集中趋势进行判断即可.
解:Ⅰ个城市除夕18时空气中浓度的平均值
.
Ⅱ以上8个城市中禁止燃放烟花爆竹的有太原,上海,南京,杭州4个城市,
随机变量X的所有可能取值为0,1,2,,可得:,,,
.
X的分布列为:
X | 0 | 1 | 2 | 3 |
P |
X的数学期望.
根据数据的集中趋势进行判断出.
【题目】某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.
(1)求的值;
(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列列联表,并判断是否有的把握认为消费金额与性别有关?
(3)分析人员对抽取对象每周的消费金额与年龄进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)
列联表
男性 | 女性 | 合计 | |
消费金额 | |||
消费金额 | |||
合计 |
临界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,其中