题目内容
(5分)(2011•重庆)若实数a,b,c满足2a+2b=2a+b,2a+2b+2c=2a+b+c,则c的最大值是 .
2﹣log23
试题分析:由基本不等式得2a+2b≥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051925595990.png)
再由2a+2b+2c=2a+b+c=2a+b2c=2a+b+2c,2c可用2a+b表达,利用不等式的性质求范围即可.
解:由基本不等式得2a+2b≥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051925595990.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051925595990.png)
令t=2a+b,由2a+2b+2c=2a+b+c可得2a+b+2c=2a+b2c,所以2c=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051925642546.png)
因为t≥4,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051925642611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051925658583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051925689925.png)
故答案为:2﹣log23
点评:本题考查指数的运算法则,基本不等式求最值、不等式的性质等问题,综合性较强.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目