题目内容
已知三个球的半径,,满足,则它们的表面积,,,满足的等量关系是___________.
解析
如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.(1)求证:ED⊥平面EBC; (2)求三棱锥E-DBC的体积.
如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合.(1)当点M是EC中点时,求证:BM//平面ADEF;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积
如图,在平行四边形中,,,将沿折起到的位置.(1)求证:平面;(2)当取何值时,三棱锥的体积取最大值?并求此时三棱锥的侧面积.
(2013•湖北)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1﹣A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S中.(1)证明:中截面DEFG是梯形;(2)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1﹣A2B2C2的体积V)时,可用近似公式V估=S中﹣h来估算.已知V=(d1+d2+d3)S,试判断V估与V的大小关系,并加以证明.
已知平面,在内有4个点,在内有6个点,以这些点为顶点,最多可作 个三棱锥,在这些三棱锥中最多可以有 个不同的体积.
若一个球的体积为,则它的表面积为________________.
若球、表面积之比,则它们的半径之比 .
直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于 。