题目内容
【题目】已知奇函数在上单调递减,且,则不等式的解集________.
【答案】
【解析】
根据题意,由奇函数的性质可得f(﹣3)=0,结合函数的单调性分析可得f(x)>0与f(x)<0的解集,又由(x﹣1)f(x)>0或,分析可得x的取值范围,即可得答案.
根据题意,f(x)为奇函数且f(3)=0,则f(﹣3)=0,
又由f(x)在(﹣∞,0)上单调递减,则在(﹣∞,﹣3)上,f(x)>0,在(﹣3,0)上,f(x)<0,
又由f(x)为奇函数,则在(0,3)上,f(x)>0,在(3,+∞)上,f(x)<0,
则f(x)<0的解集为(﹣3,0)∪(3,+∞),f(x)>0的解集为(﹣∞,﹣3)∪(0,3);
(x﹣1)f(x)>0或,
分析可得:﹣1<x<0或1<x<3,
故不等式的解集为(﹣3,0)∪(1,3);
故答案为(﹣3,0)∪(1,3);
练习册系列答案
相关题目