题目内容
【题目】已知函数.
(1)讨论函数的单调性;
(2)当m=1时,若方程在区间上有唯一的实数解,求实数a的取值范围;
【答案】(1)见解析;(2);
【解析】
(1)求出函数的导数,通过讨论m的范围,求出函数的单调区间即可;
(2)分离a,得到a=1,令g(x)=1,根据函数的单调性求出a的范围即可.
(1)f(x)的定义域是(0,+∞), f′(x)=x+m+=,
m≥0时,f′(x)>0, 故m≥0时,f(x)在(0,+∞)递增;
m<0时,方程x2+mx+m=0的判别式为: △=m2-4m>0,
令f′(x)>0,解得:x>,
令f′(x)<0,解得:0<x<,
故m<0时,f(x)在(,+∞)递增,在(0,)递减;
(2)m=1时,由题意得:x2+x+lnx=x2+ax, 整理得:a=1+,
令g(x)=1+,g′(x)=,
令g′(x)>0,解得:x∈(0,e),函数g(x)在(0,e)递增,
令g′(x)<0,解得:x∈(e,+∞),函数g(x)在(e,+∞)递减;
若方程f(x)=x2+ax在[e,+∞)上有唯一实数根,
须求g(x)在[e,+∞)上的取值范围,
g(x)≤g(e)=1+,又g(x)=1+>1,(x>e), ∴a的范围是g()≤a≤1,
即1-e≤a≤1;
【题目】“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:
步数/步 | 10000以上 | ||||
男生人数/人 | 1 | 2 | 7 | 15 | 5 |
女性人数/人 | 0 | 3 | 7 | 9 | 1 |
规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.
(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记表示随机抽取3人中被系统评为“积极性”的人数,求和的数学期望.
(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为;
其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为;求的概率.