ÌâÄ¿ÄÚÈÝ
ÏÂÃæʹÓÃÀà±ÈÍÆÀíÕýÈ·µÄÐòºÅÊÇ
¢ÙÓÉ¡°a£¨b+c£©=ab+ac¡±Àà±ÈÍƳö¡°cos£¨¦Á+¦Â£©=cos¦Á+cos¦Â¡±
¢ÚÓÉ¡°Èô3a£¼3b£¬Ôòa£¼b¡±Àà±ÈÍƳö¡°Èôac£¼bc£¬Ôòa£¼b¡±
¢ÛÓÉ¡°Æ½ÃæÄÚÈÝ´¹Ö±ÓÚͬһֱÏßµÄÁ½Ö±ÏßƽÐС±Àà±ÈÍƳö¡°¿Õ¼äÖд¹Ö±ÓÚͬһƽÃæµÄÁ½Æ½ÃæƽÐС±
¢ÜÓÉ¡°µÈ²îÊýÁÐ{an}ÖУ¬Èôa10=0£¬Ôòa1+a2+L+an=a1+a2+¡+a19-n£¨n£¼19£¬n¡ÊN*£©
¡±Àà±ÈÍƳö¡°ÔڵȱÈÊýÁÐ{bn}ÖУ¬Èôb9=1£¬ÔòÓÐb1b2¡bn=b1b2¡b17-n£¨n£¼17£¬n¡ÊN*£©¡±
¢Ü
¢Ü
£®¢ÙÓÉ¡°a£¨b+c£©=ab+ac¡±Àà±ÈÍƳö¡°cos£¨¦Á+¦Â£©=cos¦Á+cos¦Â¡±
¢ÚÓÉ¡°Èô3a£¼3b£¬Ôòa£¼b¡±Àà±ÈÍƳö¡°Èôac£¼bc£¬Ôòa£¼b¡±
¢ÛÓÉ¡°Æ½ÃæÄÚÈÝ´¹Ö±ÓÚͬһֱÏßµÄÁ½Ö±ÏßƽÐС±Àà±ÈÍƳö¡°¿Õ¼äÖд¹Ö±ÓÚͬһƽÃæµÄÁ½Æ½ÃæƽÐС±
¢ÜÓÉ¡°µÈ²îÊýÁÐ{an}ÖУ¬Èôa10=0£¬Ôòa1+a2+L+an=a1+a2+¡+a19-n£¨n£¼19£¬n¡ÊN*£©
¡±Àà±ÈÍƳö¡°ÔڵȱÈÊýÁÐ{bn}ÖУ¬Èôb9=1£¬ÔòÓÐb1b2¡bn=b1b2¡b17-n£¨n£¼17£¬n¡ÊN*£©¡±
·ÖÎö£º¶ÔÓÚ¢Ù¸ù¾ÝÈý½Çº¯ÊýµÄºÍ½Ç¹«Ê½Öª¡°cos£¨¦Á+¦Â£©=cos¦Á+cos¦Â¡±²»ÕýÈ·£»¢ÚÈôc£¼0¡°Èôac£¼bc£¬Ôòa£¼b²»³ÉÁ¢£»ÃüÌâ¢Û²»¶Ô£¬´¹Ö±ÓÚͬһ¸öƽÃæµÄÁ½¸öƽÃ滹¿ÉÄÜÏཻ£¬±ÈÈç¿Î±¾´ò¿ªÁ¢ÔÚ×ÀÃæÉÏ£®Ò²¿É½áºÏ³¤·½ÌåºÍÉí±ßµÄÊÂÎïÀ´Åжϣ®¶ÔÓڢܣ¬¸ù¾ÝÀà±ÈµÄ¹æÔò£¬ºÍÀà±È»ý£¬¼ÓÀà±È³Ë£¬ÓÉÀà±È¹æÂɵóö½áÂÛ¼´¿É£®
½â´ð£º½â£ºÃüÌâ¢Ù£¬¸ù¾ÝÈý½Çº¯ÊýµÄºÍ½Ç¹«Ê½Öª¡°cos£¨¦Á+¦Â£©=cos¦Á+cos¦Â¡±²»ÕýÈ·£»
¶ÔÓÚ¢ÚÈôc£¼0¡°Èôac£¼bc£¬Ôòa£¼b²»³ÉÁ¢£»ÃüÌâ¢Ú²»¶Ô£¬
ÃüÌâ¢Û²»¶Ô£¬´¹Ö±ÓÚͬһ¸öƽÃæµÄÁ½¸öƽÃ滹¿ÉÄÜÏཻ£¬±ÈÈç¿Î±¾´ò¿ªÁ¢ÔÚ×ÀÃæÉÏ£®
¶ÔÓÚ¢ÜÔڵȲîÊýÁÐ{an}ÖУ¬Èôa10=0£¬ÔòÓеÈʽa1+a2+¡+an=a1+a2+¡+a19-n£¨n£¼19£¬n¡ÊN+£©³ÉÁ¢£¬
¹ÊÏàÓ¦µÄÔڵȱÈÊýÁÐ{bn}ÖУ¬Èôb9=1£¬ÔòÓеÈʽb1•b2•¡•bn=b1•b2•¡•b17-n£¨n£¼17£©£¬ÕýÈ·£®
¹Ê´ð°¸Îª¢Ü£®
¶ÔÓÚ¢ÚÈôc£¼0¡°Èôac£¼bc£¬Ôòa£¼b²»³ÉÁ¢£»ÃüÌâ¢Ú²»¶Ô£¬
ÃüÌâ¢Û²»¶Ô£¬´¹Ö±ÓÚͬһ¸öƽÃæµÄÁ½¸öƽÃ滹¿ÉÄÜÏཻ£¬±ÈÈç¿Î±¾´ò¿ªÁ¢ÔÚ×ÀÃæÉÏ£®
¶ÔÓÚ¢ÜÔڵȲîÊýÁÐ{an}ÖУ¬Èôa10=0£¬ÔòÓеÈʽa1+a2+¡+an=a1+a2+¡+a19-n£¨n£¼19£¬n¡ÊN+£©³ÉÁ¢£¬
¹ÊÏàÓ¦µÄÔڵȱÈÊýÁÐ{bn}ÖУ¬Èôb9=1£¬ÔòÓеÈʽb1•b2•¡•bn=b1•b2•¡•b17-n£¨n£¼17£©£¬ÕýÈ·£®
¹Ê´ð°¸Îª¢Ü£®
µãÆÀ£º±¾Ì⿼²éÀà±ÈÍÆÀí£¬½âÌâµÄ¹Ø¼üÊÇÕÆÎÕºÃÀà±ÈÍÆÀíµÄ¶¨Òå¼°Á½ÀàÊÂÎïÖ®¼äµÄ¹²ÐÔ£¬Óɴ˵óöÀà±ÈµÄ½áÂÛ¼´¿É£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÃæʹÓÃÀà±ÈÍÆÀíÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢Ö±Ïß
| ||||||||||||||||||||||||||||||||||||
B¡¢Í¬Ò»Æ½ÃæÄÚ£¬Ö±Ïßa£¬b£¬c£¬Èôa¡Íc£¬b¡Íc£¬Ôòa¡Îb£®ÀàÍƳö£º¿Õ¼äÖУ¬Ö±Ïßa£¬b£¬c£¬Èôa¡Íc£¬b¡Íc£¬Ôòa¡Îb | ||||||||||||||||||||||||||||||||||||
C¡¢ÊµÊýa£¬b£¬Èô·½³Ìx2+ax+b=0ÓÐʵÊý¸ù£¬Ôòa2¡Ý4b£®ÀàÍƳö£º¸´Êýa£¬b£¬Èô·½³Ìx2+ax+b=0ÓÐʵÊý¸ù£¬Ôòa2¡Ý4b | ||||||||||||||||||||||||||||||||||||
D¡¢ÒԵ㣨0£¬0£©ÎªÔ²ÐÄ£¬rΪ°ë¾¶µÄÔ²µÄ·½³ÌΪx2+y2=r2£®ÀàÍƳö£ºÒԵ㣨0£¬0£¬0£©ÎªÇòÐÄ£¬rΪ°ë¾¶µÄÇòµÄ·½³ÌΪx2+y2+z2=r2 |
ÏÂÃæʹÓÃÀà±ÈÍÆÀíÕýÈ·µÄÊÇ£¨ £©
A£®¡°Èôa¡¤3=b¡¤3£¬Ôòa=b¡±ÀàÍƳö¡°Èôa¡¤0=b¡¤0£¬Ôòa=b¡± |
B£®¡°Èô(a+b)c=ac+bc¡±ÀàÍƳö¡°(a¡¤b)c=ac¡¤bc¡± |
C£®¡°Èô(a+b)c=ac+bc¡±ÀàÍƳö¡°(c¡Ù0)¡± |
D£®¡°(ab)n=anbn¡±ÀàÍƳö¡°(a+b)n=an+bn¡± |