题目内容
19.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,且|F1F2|=2c,若椭圆上存在点M使得$\frac{a}{sin∠M{F}_{1}{F}_{2}}$=$\frac{c}{sin∠M{F}_{2}{F}_{1}}$,则该椭圆离心率的取值范围是($\sqrt{2}$-1,1).分析 设|MF1|=m,|MF2|=n,∠MF1F2=α,∠MF2F1=β.△MF1F2中,由正弦定理可得:$\frac{n}{sinα}=\frac{m}{sinβ}=\frac{2c}{sin(α+β)}$,可得$\frac{n+m}{sinα+sinβ}$=$\frac{2a}{sinα+sinβ}$=$\frac{2c}{sin(α+β)}$,a(sinαcosβ+cosαsinβ)=csinα+csinβ.(*)已知$\frac{a}{sinα}=\frac{c}{sinβ}$,可得sinβ=$\frac{csinα}{a}$.代入可得acosβ=$c+\frac{{c}^{2}}{a}$-ccosα,利用同角三角函数的平方关系可得:a2=(csinα)2+$(c+\frac{{c}^{2}}{a}-ccosα)^{2}$,利用cosα∈[-1,1),化简整理解出即可得出.
解答 解:设|MF1|=m,|MF2|=n,∠MF1F2=α,∠MF2F1=β.
△MF1F2中,由正弦定理可得:$\frac{n}{sinα}=\frac{m}{sinβ}=\frac{2c}{sin(α+β)}$,
∴$\frac{n+m}{sinα+sinβ}$=$\frac{2a}{sinα+sinβ}$=$\frac{2c}{sin(α+β)}$,
∴a(sinαcosβ+cosαsinβ)=csinα+csinβ.(*)
已知$\frac{a}{sinα}=\frac{c}{sinβ}$,∴sinβ=$\frac{csinα}{a}$.
代入可得acosβ=$c+\frac{{c}^{2}}{a}$-ccosα,
∴a2=(csinα)2+$(c+\frac{{c}^{2}}{a}-ccosα)^{2}$,
化为:cosα=$\frac{{a}^{4}-2{a}^{2}{c}^{2}-2a{c}^{3}-{c}^{4}}{2({a}^{2}{c}^{2}+a{c}^{3})}$∈[-1,1),
化为-1≤$\frac{1-2{e}^{2}-2{e}^{3}-{e}^{4}}{2{e}^{2}+2{e}^{3}}$<1,0<e<1,
化为e2+2e-1>0,
解得$\sqrt{2}-1$<e<1.
解得e∈($\sqrt{2}$-1,1).
故答案为:($\sqrt{2}$-1,1).
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、正弦定理、比例的性质、三角函数化简、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.
A. | $\frac{1}{26}$ | B. | $\frac{1}{82}$ | C. | $\frac{2}{5}$ | D. | $\frac{10}{729}$ |
分数段 | [0,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,150] |
人数 | 8 | 8 | 10 | 12 | 6 | 6 |
A. | 0.44,0.52 | B. | 0.44,1 | C. | 0.20,0.48 | D. | 0.20,0.52 |
A. | sin$\frac{θ}{2}$ | B. | cos$\frac{θ}{2}$ | C. | tan$\frac{θ}{2}$ | D. | cos2θ |
A. | (-∞,$\frac{{e}^{3}}{2}$+$\frac{e}{6}$) | B. | [($\frac{{e}^{3}}{2}$+$\frac{e}{6}$,+∞) | C. | (-∞,e) | D. | (-∞,e) |