ÌâÄ¿ÄÚÈÝ

3£®Óɲ»µÈʽ×é$\left\{\begin{array}{l}{1¡Üx¡Üe}\\{lnx-y+1¡Ý0}\\{2x-£¨e-1£©y-2¡Ü0}\end{array}\right.$È·¶¨µÄƽÃæÇøÓòΪM£¬Óɲ»µÈʽ×é$\left\{\begin{array}{l}{1¡Üx¡Üe}\\{0¡Üy¡Ü2}\end{array}\right.$È·¶¨µÄƽÃæÇøÓòΪN£¬ÔÚNÄÚËæ»úµÄÈ¡Ò»µãP£¬ÔòµãPÂäÔÚÇøÓòMÄڵĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2e-2}$B£®$\frac{e-2}{2e-2}$C£®$\frac{3-e}{4e-4}$D£®$\frac{e}{2e-2}$

·ÖÎö »­³öÇøÓò£¬·Ö±ðÇó³öÇøÓòM£¬NµÄÃæ»ý£¬ÀûÓü¸ºÎ¸ÅÐ͵Ĺ«Ê½½â´ð

½â´ð ½â£º²»µÈʽȷ¶¨µÄƽÃæÇøÓòΪMÈçͼÖкÚÉ«ÒõÓ°²¿·Ö£¬ÆäÃæ»ýµÈÓÚºìÉ«²¿·ÖÃæ»ý£¬
ËùÒÔ${¡Ò}_{1}^{e}£¨lnx+1-\frac{2}{e-1}x+\frac{2}{e-1}£©dx$=${¡Ò}_{0}^{1}\frac{e-1}{2}xdx+{¡Ò}_{1}^{2}£¨\frac{e-1}{2}x+1-{e}^{x-1}£©dx$=$\frac{e-1}{4}{x}^{2}{|}_{0}^{1}+£¨\frac{e-1}{4}{x}^{2}+x-{e}^{x-1}£©{|}_{1}^{2}$=1£¬
ÇøÓòNµÄÃæ»ýΪ2£¨e-1£©=2e-2£¬
Óɼ¸ºÎ¸ÅÐ͹«Ê½¿ÉµÃÔÚNÄÚËæ»úµÄÈ¡Ò»µãP£¬ÔòµãPÂäÔÚÇøÓòMÄڵĸÅÂÊΪ£º$\frac{1}{2e-2}$£»
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁ˼¸ºÎ¸ÅÐ͵ĸÅÂÊÇ󷨣¬¹Ø¼üÊÇ·Ö±ðÇó³öÇøÓòM£¬NµÄÃæ»ý£¬ÀûÓü¸ºÎ¸ÅÐ͹«Ê½½â´ð£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø