题目内容
如图,已知二面角α-PQ-β的大小为60°,点C为棱PQ上一点,A∈β,AC=2,∠ACP=30°,则点A到平面α的距离为( )
A.1 | B. | C. | D. |
C
试题分析:过A作AO⊥α于O,点A到平面α的距离为AO;作AD⊥PQ于D,连接OD,则AD⊥CD,AO⊥OD,∠ADO就是二面角α-PQ-β的大小为60°.∵AC=2,∠ACP=30°,所以AD=ACsin30°=2×=1,在Rt△AOD中,。
点评:本题考查空间几何体中点、线、面的关系,正确作出所求距离是解题的关键,考查计算能力与空间想象能力。
练习册系列答案
相关题目