题目内容
【题目】已知数列的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有成立,则称此数列为“λ~k”数列.
(1)若等差数列是“λ~1”数列,求λ的值;
(2)若数列是“”数列,且an>0,求数列的通项公式;
(3)对于给定的λ,是否存在三个不同的数列为“λ~3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由,
【答案】(1)1
(2)
(3)
【解析】
(1)根据定义得,再根据和项与通项关系化简得,最后根据数列不为零数列得结果;
(2)根据定义得,根据平方差公式化简得,求得,即得;
(3)根据定义得,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果
(1)
(2)
,
(3)假设存在三个不同的数列为数列.
或
或
∵对于给定的,存在三个不同的数列为数列,且
或有两个不等的正根.
可转化为,不妨设,则有两个不等正根,设.
① 当时,,即,此时,,满足题意.
② 当时,,即,此时,,此情况有两个不等负根,不满足题意舍去.
综上,
练习册系列答案
相关题目
【题目】某学校课外兴趣小组利用假期到植物园开展社会实践活动,研究某种植物生长情况与温度的关系.现收集了该种植物月生长量y(cm)与月平均气温x(℃)的8组数据,并制成如图所示的散点图.
根据收集到的数据,计算得到如下值:
18 | 12.325 | 224.04 | 235.96 |
(1)求出y关于x的线性回归方程(最终结果的系数精确到0.01),并求温度为28℃时月生长量y的预报值;
(2)根据y关于x的回归方程,得到残差图如图所示,分析该回归方程的拟合效果.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.