题目内容
【题目】斐波那契数列{an}满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n项所占的格子的面积之和为Sn , 每段螺旋线与其所在的正方形所围成的扇形面积为cn , 则下列结论错误的是( )
A.
B.a1+a2+a3+…+an=an+2﹣1
C.a1+a3+a5+…+a2n﹣1=a2n﹣1
D.4(cn﹣cn﹣1)=πan﹣2an+1
【答案】C
【解析】解:由题意,a1=1,a3=2,a4=3,a5=5,a6=8,a7=13,
∴a1+a3=3≠a4﹣1,a1+a3+a5=8≠a6﹣1,
故选:C.
【考点精析】认真审题,首先需要了解归纳推理(根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理).
【题目】某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价xi(单位:元/件,整数)和销量yi(单位:件)(i=1,2,…,8)如下表所示:
售价x | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
销量y | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①请根据下列数据计算相应的相关指数R2 , 并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价x定为多少时?利润z可以达到最大.
|
|
| |
| 49428.74 | 11512.43 | 175.26 |
| 124650 |
(附:相关指数 )