题目内容

15.已知点P(2,0)及圆C:(x-3)2+(y+2)2=9.
(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;
(Ⅱ)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

分析 (1)分直线斜率存在与否,两种情况解答;
(2)把直线y=ax+1代入圆C的方程d得到关于x的一元二次方程,利用交点个数与判别式的关系得到a的范围,设符合条件的实数a存在,利用直线垂直的斜率关系得到a值判断.

解答 解:(1)设直线l的斜率为k(k存在),
则方程为y-0=k(x-2).即kx-y-2k=0
又圆C的圆心为(3,-2),半径r=3,
由  $\frac{{|{3k+2-2k}|}}{{\sqrt{{k^2}+1}}}=1$,解得$k=-\frac{3}{4}$.
所以直线方程为$y=-\frac{3}{4}(x-2)$,即 3x+4y-6=0.
当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件.
(2)把直线y=ax+1.代入圆C的方程,
消去y,整理得(a2+1)x2+6(a-1)x+9=0.
由于直线ax-y-1=0交圆C于A,B两点,
故△=36(a-1)2-36(a2+1)>0,
即-2a>0,解得a<0.则实数a的取值范围是(-∞,0).
设符合条件的实数a存在,
由于l2垂直平分弦AB,故圆心C(3,-2)必在l2上.
所以l2的斜率kPC=-2,而${k_{AB}}=a=-\frac{1}{{{k_{PC}}}}$,所以$a=\frac{1}{2}$.由于$\frac{1}{2}∉(-∞,0)$,
故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.

点评 本题考查了直线方程的求法以及直线与圆的位置关系的判断;属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网