题目内容

10.正四面体ABCD的棱长为2,棱AD与平面α所成的角θ∈[$\frac{π}{3}$,$\frac{π}{2}$],且顶点A在平面α内,B,C,D均在平面α外,则棱BC的中点E到平面α的距离的取值范围是(  )
A.[$\frac{\sqrt{3}}{2}$,1]B.[$\frac{\sqrt{3}-\sqrt{2}}{2}$,1]C.[$\frac{\sqrt{3}-\sqrt{2}}{2}$,$\frac{\sqrt{3}+\sqrt{2}}{2}$]D.[$\frac{\sqrt{3}-\sqrt{2}}{2}$,$\sqrt{3}$]

分析 取平面DEA⊥平面α位置考虑,在△ADE中,求出cos∠DAE,再考虑特殊位置,可得结论.

解答 解:取平面DEA⊥平面α位置考虑即可.如图所示,
在△ADE中,AD=2,DE=AE=$\sqrt{3}$,
∴cos∠DAE=$\frac{4+3-3}{2×2×\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
棱AD与平面α所成的角为$\frac{π}{3}$时,sin∠EAN=sin($\frac{π}{3}$-∠DAE)
=$\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{3}-\frac{1}{2}×\frac{\sqrt{6}}{3}$=$\frac{1}{2}-\frac{\sqrt{6}}{6}$,
∴EN=$\sqrt{3}$($\frac{1}{2}-\frac{\sqrt{6}}{6}$)=$\frac{\sqrt{3}-\sqrt{2}}{2}$
或sin∠EAN=sin($\frac{π}{3}$+∠DAE)=$\frac{1}{2}+\frac{\sqrt{6}}{6}$
∴EN=$\sqrt{3}$($\frac{1}{2}+\frac{\sqrt{6}}{6}$)=$\frac{\sqrt{3}+\sqrt{2}}{2}$
∴棱BC的中点E到平面α的距离的取值范围是[$\frac{\sqrt{3}-\sqrt{2}}{2}$,$\frac{\sqrt{3}+\sqrt{2}}{2}$].
故选:C.

点评 本题考查线面角,考查学生分析解决问题的能力,取特殊位置是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网