题目内容
【题目】若存在满足下列三个条件的集合,,,则称偶数为“萌数”:
①集合,,为集合的个非空子集,,,两两之间的交集为空集,且;②集合中的所有数均为奇数,集合中的所有数均为偶数,所有的倍数都在集合中;③集合,,所有元素的和分别为,,,且.注:.
(1)判断:是否为“萌数”?若为“萌数”,写出符合条件的集合,,,若不是“萌数”,说明理由.
(2)证明:“”是“偶数为萌数”成立的必要条件.
【答案】(1)是,,,;(2)证明见解析;
【解析】
(1)根据条件先确定,再根据和确定以及,最后确定C;
(2)说明时不可能成立,即可证得结果
(1) 因为所有的倍数都在集合中,所以
因为,即为“萌数”, ,,;
(2)当时,因为所有的倍数都在集合中,所以
而,即时,偶数不为萌数;
当时,因为,所以时,偶数不为萌数;
因此偶数为萌数时,,即“”是“偶数为萌数”成立的必要条件.
练习册系列答案
相关题目
【题目】为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:
场数 | 9 | 10 | 11 | 12 | 13 | 14 |
人数 | 10 | 18 | 22 | 25 | 20 | 5 |
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?
非歌迷 | 歌迷 | 合计 | |
男 | |||
女 | |||
合计 |
(2)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2=.