题目内容
已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.(1)求a;(2)求函数f(x)的单调区间;(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
(1)a=16(2)单调增区间为(-1,1),(3,+∞),单调减区间为(1,3).(3)(32ln 2-21,16ln 2-9)
解析
已知函数在与时都取得极值.(1)求的值及的极大值与极小值;(2)若方程有三个互异的实根,求的取值范围;(3)若对,不等式恒成立,求的取值范围.
已知函数,, (1)若,求曲线在处的切线方程;(2)若对任意的,都有恒成立,求的最小值;(3)设,,若,为曲线的两个不同点,满足,且,使得曲线在处的切线与直线AB平行,求证:
设函数f(x)=x3-x2+6x-a.(1)对于任意实数x,f′(x)≥m恒成立,求m的最大值;(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
已知函数f(x)=ln x+2x-6.(1)证明:函数f(x)有且只有一个零点;(2)求该零点所在的一个区间,使这个区间的长度不超过
已知函数的图像在点处的切线斜率为10. (1)求实数的值;(2)判断方程根的个数,并证明你的结论;(21)探究: 是否存在这样的点,使得曲线在该点附近的左、右两部分分别位于曲线在该点处切线的两侧? 若存在,求出点A的坐标;若不存在,说明理由.
已知f(x)=xln x,g(x)=x3+ax2-x+2.(1)求函数f(x)的单调区间;(2)求f(x)在区间[t,t+2](t>0)上的最小值;(3)对一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求实数a的取值范围.
设函数.(1)当时,求函数的单调区间;(2)当时,若恒成立,求的取值范围.
已知a,b为常数,a¹0,函数.(1)若a=2,b=1,求在(0,+∞)内的极值;(2)①若a>0,b>0,求证:在区间[1,2]上是增函数;②若,,且在区间[1,2]上是增函数,求由所有点形成的平面区域的面积.