题目内容
【题目】已知经过圆上点的切线方程是.
(1)类比上述性质,直接写出经过椭圆上一点的切线方程;
(2)已知椭圆,P为直线上的动点,过P作椭圆E的两条切线,切点分别为AB,
①求证:直线AB过定点.
②当点P到直线AB的距离为时,求三角形PAB的外接圆方程.
【答案】(1).(2)①证明见解析;②,.
【解析】
(1)直接类比得到答案.
(2)①设切点为,点,根据(1)得到切线方程,代入点,化简得到答案.
②根据点到直线距离得到,得到切线方程,联立方程组得到交点,设圆一般方程,代入点解得答案.
(1)类比上述性质知:切线方程为.
(2)①设切点为,点,
由(1)的结论的AP直线方程:,BP直线方程:,
通过点,∴有, ∴A,B满足方程:,
∴直线AB恒过点:,即直线AB恒过点.
②已知点到直线AB的距离为. ∴,
故,, ∴.
当时,点,直线AB的方程为:, ,
解得或,故点.
设的外接圆方程为:,代入得,
解得,所以的外接圆方程为,
即的外接圆方程为: ,
当时,由对称性可知,三角形PAB的外接圆方程为:.
【题目】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 | [0,200] | (200,400] | (400,600] |
1(优) | 2 | 16 | 25 |
2(良) | 5 | 10 | 12 |
3(轻度污染) | 6 | 7 | 8 |
4(中度污染) | 7 | 2 | 0 |
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 | 人次>400 | |
空气质量好 | ||
空气质量不好 |
附:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.
(1)请将列联表填写完整:
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 | 27 | ||
无武汉旅行史 | 18 | ||
总计 | 27 | 54 |
(2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |