题目内容

设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.
(1)求椭圆C的方程;
(2)是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦, MNAB,求证:为定值

解:椭圆的顶点为,即
,解得,  椭圆的标准方程为 …… 3分
(2)由题可知,直线与椭圆必相交.
①当直线斜率不存在时,经检验不合题意.
②设存在直线,且.
,                     


=  
所以,故直线的方程为 …………8分
(3)设,
由(2)可得:  |MN|=
=.
消去y,并整理得: ,
|AB|=,∴ 为定值

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网