题目内容
已知函数.
(Ⅰ) 求f(x)的反函数的图象上图象上点(1,0)处的切线方程;
(Ⅱ) 证明: 曲线y = f (x) 与曲线有唯一公共点.
(Ⅲ) 设a<b, 比较与的大小, 并说明理由.
【答案】(Ⅰ) y = x+ 1.
当m 时,有0个公共点;当m= ,有1个公共点;当m 有2个公共点;
(Ⅲ) >
(Ⅱ)【解析】(Ⅰ) f (x)的反函数,则y=g(x)过点(1,0)的切线斜率k=.
.过点(1,0)的切线方程为:y = x+ 1
(Ⅱ) 证明曲线y=f(x)与曲线有唯一公共点,过程如下。
因此,
所以,曲线y=f(x)与曲线只有唯一公共点(0,1).(证毕)
(Ⅲ) 设
令。
,且
。
所以
练习册系列答案
相关题目
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)的部分图象如图所示,则函数f(x)的解析式为( )
π |
2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|