题目内容

(本小题满分14分)已知点P(2,0),及圆C:x2+y2-6x+4y+4=0.

(1)当直线l过点P且与圆心C的距离为1时,求直线l的方程;

(2)设过点P的直线与圆C交于A、B两点,当|AB|=4,求以线段AB为直径的圆的方程.

 

【答案】

(1)x=2;(2)(x-2)2+y2=4

【解析】本试题主要是考查了直线与圆的位置关系的运用。以及圆的方程的求解问题。

(1)因为设直线l的斜率为k(k存在)则方程为y-0=k(x-2)

 又⊙C的圆心为(3,-2) ,r=3,利用线与圆的位置关系可知直线的方程。

(2)根据设过点P的直线与圆C交于A、B两点,当|AB|=4,利用半径长和半弦长,弦心距的勾股定理得到结论。

解:(1)设直线l的斜率为k(k存在)则方程为y-0=k(x-2)  …………………1分

 又⊙C的圆心为(3,-2) ,r=3          

           ……………………4分

所以直线方程为    ……………………6分

当k不存在时,l的方程为x=2.                    ……………………8分

(2)由弦心距,       ……………………11分

知P为AB的中点,故以AB为直径的圆的方程为(x-2)2+y2=4.  …………………14分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网