题目内容
【题目】已知函数在处的切线经过点
(1)讨论函数的单调性;
(2)若不等式恒成立,求实数的取值范围.
【答案】(1)在单调递减;(2).
【解析】试题分析:
(1)对函数进行求导,结合导函数与切线的关系求得 实数 的值,确定函数的解析式之后即可讨论函数的单调性.
(2)分离系数后讨论 的取值范围即可,构造新函数后求导,讨论新函数的值域,注意讨论值域时利用反证法假设存在实数 满足 ,由得出的矛盾知假设不成立,即函数的最小值开区间处为 .
试题解析:
(1)由题意得
∴,
∴在处的切线方程为
即,
∵点在该切线上,∴,
∴
函数在单调递减;
(2)由题意知且,
原不等式等价于,
设,
由(1)得在单调递减,且,
当时, ;当时, ;
∴,
假设存在正数,使得,
若,当时, ;
若,当时, ;
∴不存在这样的正数,使得,∴的值域为
∴的取值范围为.
练习册系列答案
相关题目
【题目】2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)
无意愿 | 有意愿 | 总计 | |
男 | 40 | ||
女 | 5 | ||
总计 | 25 | 80 |
(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;
(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.
附参考公式及数据: ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |