题目内容

【题目】已知函数f(x)对一切x,y∈R都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知a∈R,设P:当 时,不等式f(x)+3<2x+a恒成立,Q:当x∈[﹣2,2]时,g(x)=f(x)﹣ax是单调函数,如果记使P成立的实数a的取值的集合为A,使Q成立的实数a的取值的集合为B,求A∩RB.

【答案】
(1)解:∵f(x+y)﹣f(y)=x(x+2y+1),f(1)=0,取x=﹣1,y=1得f(0)﹣f(1)=﹣(﹣1+2+1),f(0)=﹣2
(2)解:取y=0,得f(x)﹣f(0)=x(x+1),故f(x)=x2+x﹣2
(3)解:(i)当 时,不等式f(x)+3<2x+a恒成立,即x2﹣x+1<a恒成立

记h(x)=x2﹣x+1,对称轴 ,h(x)max=h(0)=1,

所以a>1,即A=(1,+∞)

(ii)g(x)=x2+(1﹣a)x﹣2,对称轴:

由于x∈[﹣2,2]时,g(x)是单调函数,所以

即A=(﹣∞,﹣3]∪[5,+∞),所以CRB=(﹣3,5),A∩CRB=(1,5)


【解析】(1)令x=﹣1,y=1,利用f(x+y)﹣f(y)=x(x+2y+1),即可求得f(0)的值;(2)令y=0,则f(x)﹣f(0)=x(x+1),结合f(0)=﹣2,可求f(x)的解析式;(3)不等式f(x)+3<2x+a,即x2+x﹣2+3<2x+a,即x2﹣x+1<a,从而可得A,根据g(x)在[﹣2,2]上是单调函数,可求B,从而可求A∩CRB.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网