题目内容
5.已知f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$),且f($\frac{1}{2}$a+$\frac{π}{4}$)=-$\frac{4\sqrt{2}}{5}$,$\frac{17π}{12}$<α<$\frac{7π}{4}$.(1)求cosα;
(2)求$\frac{sin2x+2si{n}^{2}x}{1-tanx}$.
分析 (1)直接利用函数值列出方程,求出$cos(α+\frac{π}{4})=\frac{3}{5}$,利用两角和与差的三角函数求解即可.
(2)求出正切函数值,化简所求的表达式为正切函数的形式,代入求解即可.
解答 解:(Ⅰ)$f(\frac{1}{2}α+\frac{π}{4})=\sqrt{2}sin(2(\frac{1}{2}α+\frac{π}{4})-\frac{π}{4})=\sqrt{2}sin(α+\frac{π}{4})=-\frac{{4\sqrt{2}}}{5}$.
∴$sin(α+\frac{π}{4})=-\frac{4}{5}$,
∵$\frac{17π}{12}<α<\frac{7π}{4}$,∴$\frac{5π}{3}<α+\frac{π}{4}<2π$,
又∵$sin(α+\frac{π}{4})=-\frac{4}{5}$,∴$cos(α+\frac{π}{4})=\frac{3}{5}$
∴$\begin{array}{c}cosα=cos[(α+\frac{π}{4})-\frac{π}{4}]=cos(α+\frac{π}{4})cos\sqrt{2}\frac{π}{4}+sin(α+\frac{π}{4})sin\frac{π}{4}\\ \begin{array}{\;}\end{array}\right.\end{array}\right.$
=$\frac{3}{5}•\frac{\sqrt{2}}{2}+(-\frac{4}{5})•\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}$…(6分)
(Ⅱ)同理(Ⅰ),$sinα=-\frac{{7\sqrt{2}}}{10}$,∴$sin2α=2sinαcosα=\frac{7}{25}$,$tanα=\frac{sinα}{cosα}=7$,
∴原式=$\frac{{\frac{7}{25}+2•{{(-\frac{{7\sqrt{2}}}{10})}^2}}}{1-7}=-\frac{28}{75}$…(13分)
点评 本题考查两角和与差的三角函数,同角三角函数的基本关系式的应用,考查计算能力.