题目内容

13.已知函数f(x)=$\frac{x^2}{{1+{x^2}}}$.
(1)分别求$f(2)+f(\frac{1}{2}),f(3)+f(\frac{1}{3}),f(4)+f(\frac{1}{4})$的值,并归纳猜想一般性结论(不要求证明);
(2)求值:2f(2)+2f(3)+…+2f(2015)+f$(\frac{1}{2})$+f$(\frac{1}{3})$+…f$(\frac{1}{2015})$+$\frac{1}{2^2}$f(2)+$\frac{1}{3^2}$f(3)+…$\frac{1}{{{{2015}^2}}}$f(2015).

分析 (1)利用函数f(x)=$\frac{x^2}{{1+{x^2}}}$,代入计算,可得结论;
(2)利用$f(x)+\frac{1}{x^2}f(x)=\frac{x^2}{{1+{x^2}}}({1+\frac{1}{x^2}})=1$,$f(x)+f(\frac{1}{x})=1$,即可得出结论.

解答 解:(1)∵$f(x)=\frac{x^2}{{1+{x^2}}}$,
∴$f(2)+f(\frac{1}{2})=\frac{2^2}{{1+{2^2}}}+\frac{{{{(\frac{1}{2})}^2}}}{{1+{{(\frac{1}{2})}^2}}}=\frac{2^2}{{1+{2^2}}}+\frac{1}{{1+{2^2}}}=1$,
同理可得$f(3)+f(\frac{1}{3})=1,f(4)+f(\frac{1}{4})=1$.---------------------------(4分)
猜想$f(x)+f(\frac{1}{x})=1$.-------------------------(6分)
(2)∵$f(x)+\frac{1}{x^2}f(x)=\frac{x^2}{{1+{x^2}}}({1+\frac{1}{x^2}})=1$,-------------------------(8分)
又由(1)得,$f(x)+f(\frac{1}{x})=1$,则$\begin{array}{l}2f(2)+2f(3)+…+2f(2015)+f(\frac{1}{2})+f(\frac{1}{3})+…+f(\frac{1}{2015})+\frac{1}{2^2}f(2)+\frac{1}{3^2}f(3)+…+\frac{1}{{{{2015}^2}}}f(2015)\\=[f(2)+f(\frac{1}{2})+f(2)+\frac{1}{2^2}f(2)]+[f(3)+f(\frac{1}{3})+f(3)+\frac{1}{3^2}f(3)]+…+[f(2015)+f(\frac{1}{2015})+f(2015)+\frac{1}{{{{2015}^2}}}f(2015)]\end{array}$=$\underbrace{2+2+…+2}_{2014个2}=4028$.-----------------------------------------------------(12分)

点评 本题考查归纳推理,考查学生的计算能力,正确归纳是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网