题目内容
函数f(x)=Asin(ωx+φ)的图象如图所示,其中A>0,ω>0,|φ|<.则下列关于函数f(x)的说法中正确的是
A.
对称轴方程是
B.
C.
最小正周期是π
D.
在区间上单调递减
某旅游景点预计2013年1月份起前x个月的旅游人数的和p(x)(单位:万人)与x的关系近似地满足p(x)=x(x+1)·(39-2x),(x∈N*,且x≤12).已知第x月的人均消费额q(x)(单位:元)与x的近似关系是q(x)=
(Ⅰ)写出2013年第x月的旅游人数f(x)(单位:人)与x的函数关系式;
(Ⅱ)试问2013年第几月旅游消费总额最大,最大月旅游消费总额为多少元?
某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,…,8,其中ξ≥5为标准A,ξ≥3为标准B,产品的等级系数越大表明产品的质量越好.已知某厂执行标准B生产该产品,且该厂的产品都符合相应的执行标准.从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
该行业规定产品的等级系数ξ≥7的为一等品,等级系数5≤ξ<7的为二等品,等级系数3≤ξ<5的为三等品.
(Ⅰ)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;
(Ⅱ)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率.
已知实数x∈[0,10],执行如上图所示的程序框图,则输出的x不小于47的概率为________
已知两定点F1(-,0),F2(,0),满足条件||=||=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点.如果||=6,且曲线E上存在点C,使+=m.
(Ⅰ)求曲线E的方程;
(Ⅱ)求AB的直线方程;
(Ⅲ)求m的值.
已知椭圆的两个焦点,,过F1且与坐标轴不平行的直线ll与椭圆相交于M,N两点,△MNF2的周长等于8.若过点(1,0)的直线l与椭圆交于不同两点P、Q,x轴上存在定点E(m,0),使·恒为定值,则E的坐标为
(,0)
在钝角三角形ABC中,a、b、c分别是角A、B、C的对边,=(2b-c,cosC),=(a,cosA),且∥.
(1)求角A的大小;
(2)求函数y=2sin2B+cos(-2B)的值域.
已知n为正整数,设抛物线y2=2(2n+1)x,过点P(2n,0)任作直线l交抛物线于An,Bn两点,则数列的前2012项和是
-
阅读下面程序框图,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出数对(x,y)的概率为