题目内容

9.已知数列{an},对任意n∈N*,都有$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+$\frac{{a}_{3}-1}{{2}^{3}}$+…+$\frac{{a}_{n}-1}{{2}^{n}}$=n2,求数列{an}的前n项和Sn

分析 对任意n∈N*,都有$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+$\frac{{a}_{3}-1}{{2}^{3}}$+…+$\frac{{a}_{n}-1}{{2}^{n}}$=n2,当n=1时,$\frac{{a}_{1}-1}{2}$=1,解得a1.当n≥2时,$\frac{{a}_{n}-1}{{2}^{n}}$=2n-1,再利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:∵对任意n∈N*,都有$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+$\frac{{a}_{3}-1}{{2}^{3}}$+…+$\frac{{a}_{n}-1}{{2}^{n}}$=n2
∴当n=1时,$\frac{{a}_{1}-1}{2}$=1,解得a1=3.
当n≥2时,$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+$\frac{{a}_{3}-1}{{2}^{3}}$+…+$\frac{{a}_{n-1}-1}{{2}^{n-1}}$=(n-1)2
∴$\frac{{a}_{n}-1}{{2}^{n}}$=n2-(n-1)2=2n-1,
∴an=(2n-1)•2n+1,
令Tn=2+3×22+5×23+…+(2n-1)•2n
则2Tn=22+3×23+…+(2n-3)•2n+(2n-1)•2n+1
∴-Tn=2+2×22+2×23+…+2•2n-(2n-1)•2n+1=$\frac{4({2}^{n}-1)}{2-1}$-2-(2n-1)•2n+1=(3-2n)•2n+1-6,
∴Tn=(2n-3)•2n+1+6.
∴Sn=Tn+n=(2n-3)•2n+1+n+6.

点评 本题考查了等比数列的前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网