题目内容

【题目】已知函数f(x)是定义在R上的奇函数,且当x>0时,f(﹣x)+f(x+3)=0;当x∈(0,3)时,f(x)= ,其中e是自然对数的底数,且e≈2.72,则方程6f(x)﹣x=0在[﹣9,9]上的解的个数为(
A.4
B.5
C.6
D.7

【答案】C
【解析】解:当x>0时,f(﹣x)+f(x+3)=0,∴f(x+3)=﹣f(﹣x),
∵f(x)是奇函数,
∴f(x)的周期为3,
当x∈(0,3)时,f(x)= ,∴f′(x)=
∴函数在(0,e)上单调递增,在(e,3)上单调递减,
在[0,9]上作出y=f(x)的图象,作出y= 的图象,如图所示

∴在[0,9]上,有3个交点,由对称性,可得方程6f(x)﹣x=0在[﹣9,9]上的解的个数为6,
故选:C.
确定f(x)的周期为3,函数在(0,e)上单调递增,在(e,3)上单调递减,在[0,9]上作出y=f(x)的图象,作出y= 的图象,即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网