题目内容
已知椭圆的右焦点为,右准线与轴交于点,点在上,若(为坐标原点)的重心恰好在椭圆上,则______________________.
【解析】略
已知椭圆的右焦点为F2(1,0),点 在椭圆上.
(1)求椭圆方程;
(2)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.
已知椭圆的右焦点为,上顶点为B,离心率为,圆与轴交于两点
(Ⅰ)求的值;
(Ⅱ)若,过点与圆相切的直线与的另一交点为,求的面积
已知椭圆的右焦点为,点在椭圆上,以点为圆心的圆与轴相切,且同时与轴相切于椭圆的右焦点,则椭圆的离心率为 .
已知椭圆 的右焦点为且,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.
(1) 求椭圆的方程;
(2) 是否存在过点的直线与椭圆相交于不同的两点且使得成立?若存在,试求出直线的方程;若不存在,请说明理由.