题目内容
已知椭圆的右焦点为,上顶点为B,离心率为,圆与轴交于两点
(Ⅰ)求的值;
(Ⅱ)若,过点与圆相切的直线与的另一交点为,求的面积
【答案】
① ②
【解析】
试题分析:(Ⅰ)利用圆及椭圆方程求出点 的坐标, 再用离心率值化简,利用两点间距离即可 (Ⅱ)由椭圆方程,利用圆的切线性质确定直线 的斜率,写出直线方程,再与椭圆方程联立,求出交点坐标后求弦的长 ,及点到直线距离即可
试题解析:
(Ⅰ)由题意,,,,∵
得,
则,,
得,
则………(4分)
(Ⅱ)当时,,
得在圆F上
直线,则设
由 得,
又点到直线的距离,
得的面积 (12分)
考点:1 椭圆的定义;2 离心率;3 圆的几何性质;4 直线与椭圆位置关系的运算;5 点到直线的距离公式
练习册系列答案
相关题目