题目内容
如图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.
求证:(1)△ABC≌△DCB;
(2)DE•DC=AE•BD.
求证:(1)△ABC≌△DCB;
(2)DE•DC=AE•BD.
(1)证明:∵等腰梯形ABCD
∴∠ABC=∠DCB
又∵AB=CD,BC=CB,
∴△ABC≌△DCB
(2)证明:∵△ABC≌△DCB
∴∠ACB=∠DBC,
∵AD∥BC,∴∠DAC=∠ACB,∠EAD=∠ABC
∵ED∥AC,∴∠EDA=∠DAC,
∴∠EDA=∠DBC,∠EAD=∠DCB,
∴△ADE∽△CBD
∴DE:BD=AE:CD
∴DE•DC=AE•BD
∴∠ABC=∠DCB
又∵AB=CD,BC=CB,
∴△ABC≌△DCB
(2)证明:∵△ABC≌△DCB
∴∠ACB=∠DBC,
∵AD∥BC,∴∠DAC=∠ACB,∠EAD=∠ABC
∵ED∥AC,∴∠EDA=∠DAC,
∴∠EDA=∠DBC,∠EAD=∠DCB,
∴△ADE∽△CBD
∴DE:BD=AE:CD
∴DE•DC=AE•BD
练习册系列答案
相关题目