题目内容

【题目】设函数.

(1),求的单调区间;

(2)若当恒成立,求的取值范围.

【答案】(1) f(x)在(-∞,0)单调减少,在(0,+∞)单调增加;(2) a的取值范围为(-∞,].

【解析】

(1)a=0时,f(x)=ex-1-xf′(x)=ex-1.分别令f′(x)<0,f′(x)>0

可求的单调区间;

(2求导得到)f′(x)=ex-1-2ax.由(1)知ex≥1+x,当且仅当x=0时等号成立.故问题转化为f′(x)≥x-2ax=(1-2a)x,从而对1-2a的符号进行讨论即可得出结果.

(1)a=0时,f(x)=ex-1-xf′(x)=ex-1.

x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)单调减少,在(0,+∞)单调增加

(2)f′(x)=ex-1-2ax.由(1)知ex≥1+x,当且仅当x=0时等号成立.故f′(x)≥x-2ax=(1-2a)x,从而当1-2a≥0,即a时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由ex>1+x(x≠0)得ex>1-x(x≠0),从而当a>时,f′(x)<ex-1+2a(ex-1)=ex(ex-1)(ex-2a),故当x∈(0,ln2a)时, f′(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0,

综上可得a的取值范围为(-∞,].

练习册系列答案
相关题目

【题目】随着生活水平的提高和人们对健康生活的重视,越来越多的人加入到健身运动中.国家统计局数据显示,2019年有4亿国人经常参加体育锻炼.某健身房从参与健身的会员中随机抽取100人,对其每周参与健身的天数和2019年在该健身房所有消费金额(单位:元)进行统计,得到以下统计表及统计图:

平均每周健身天数

不大于2

34

不少于5

人数(男)

20

35

9

人数(女)

10

20

6

若某人平均每周进行健身天数不少于5,则称其为“健身达人”.该健身房规定消费金额不多于1600元的为普通会员,超过1600元但不超过3200元的为银牌会员,超过3200元的为金牌会员.

1)已知金牌会员都是健身达人,现从健身达人中随机抽取2人,求他们均是金牌会员的概率;

2)能否在犯错误的概率不超过的前提下认为性别和是否为“健身达人”有关系?

3)该健身机构在2019年年底针对这100位消费者举办一次消费返利活动,现有以下两种方案:

方案一:按分层抽样从普通会员、银牌会员和金牌会员中共抽取25位“幸运之星”,分别给予188元,288元,888元的幸运奖励;

方案二:每位会员均可参加摸奖游戏,游戏规则如下:摸奖箱中装有5张形状大小完全一样的卡片,其中3张印跑步机图案、2张印动感单车图案,有放回地摸三次卡片,每次只能摸一张,若摸到动感单车的总数为2,则获得100元奖励,若摸到动感单车的总数为3,则获得200元奖励,其他情况不给予奖励.规定每个普通会员只能参加1次摸奖游戏,每个银牌会员可参加2次摸奖游戏,每个金牌会员可参加3次摸奖游戏(每次摸奖结果相互独立).

请你比较该健身房采用哪一种方案时,在此次消费返利活动中的支出较少,并说明理由.

附:,其中为样本容量.

0.50

0.25

0.10

0.05

0.010

0.005

0.455

1.323

2.706

3.841

6.636

7.879

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网