题目内容

7.给出下列结论:①命题“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;
②命题“α=$\frac{π}{6}$”是“sinα=$\frac{1}{2}$”的充分不必要条件;
③数列{an}满足“an+1=3an”是“数列{an}为等比数列”的充分必要条件.
其中正确的是(  )
A.①②B.①③C.②③D.①②③

分析 利用命题的否定判断①的正误;充要条件判断②的正误;等比数列的定义判断③的正误.

解答 解:对于①,命题“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;满足命题的否定形式,所以①正确.
对于②,命题“α=$\frac{π}{6}$”是“sinα=$\frac{1}{2}$”的充分不必要条件;前者能够说明后者成立,sinα=$\frac{1}{2}$成立则α=$\frac{π}{6}$不一定成立,所以②正确;
对于③,数列{an}满足“an+1=3an”是“数列{an}为等比数列”的充分必要条件错误.例如:数列是常数列{0},则满足“an+1=3an”,数列不是等比数列,所以③不正确;
故选:A.

点评 本题考查命题的真假的判断,充要条件以及命题的否定,等比数列的基本知识的应用,考查基本知识的掌握情况.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网