题目内容
7.给出下列结论:①命题“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;②命题“α=$\frac{π}{6}$”是“sinα=$\frac{1}{2}$”的充分不必要条件;
③数列{an}满足“an+1=3an”是“数列{an}为等比数列”的充分必要条件.
其中正确的是( )
A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
分析 利用命题的否定判断①的正误;充要条件判断②的正误;等比数列的定义判断③的正误.
解答 解:对于①,命题“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;满足命题的否定形式,所以①正确.
对于②,命题“α=$\frac{π}{6}$”是“sinα=$\frac{1}{2}$”的充分不必要条件;前者能够说明后者成立,sinα=$\frac{1}{2}$成立则α=$\frac{π}{6}$不一定成立,所以②正确;
对于③,数列{an}满足“an+1=3an”是“数列{an}为等比数列”的充分必要条件错误.例如:数列是常数列{0},则满足“an+1=3an”,数列不是等比数列,所以③不正确;
故选:A.
点评 本题考查命题的真假的判断,充要条件以及命题的否定,等比数列的基本知识的应用,考查基本知识的掌握情况.
练习册系列答案
相关题目
17.已知向量$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,定义:$\overrightarrow{{c}_{λ}}$=λ$\overrightarrow{a}$+(1-λ )$\overrightarrow{b}$,其中0≤λ≤1.若$\overrightarrow{{c}_{λ}}$•$\overrightarrow{{c}_{\frac{1}{2}}}$=$\frac{1}{2}$,则|$\overrightarrow{{c}_{λ}}$|的最大值为( )
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
18.下列说法正确的是( )?
A. | 一组数据2,5,3,1,4,3的中位数是3 | |
B. | 五边形的外角和是540度 | |
C. | “菱形的对角线互相垂直”的逆命题是真命题 | |
D. | 三角形的外心是这个三角形三条角平分线的交点 |
15.sin135°cos(-15°)+cos225°sin15°等于( )
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |