题目内容
【题目】命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;命题q:函数f(x)=lagax在(0,+∞)上递增,若p∨q为真,而p∧q为假,求实数a的取值范围.
【答案】解:命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;
①若命题p正确,则△=(2a)2﹣42<0,即﹣2<a<2;
②命题q:函数f(x)=logax在(0,+∞)上递增a>1,
∵p∨q为真,而p∧q为假,
∴p、q一真一假,
当p真q假时,有 ,
∴﹣2<a≤1;
当p假q真时,有 ,
∴a≥2
∴综上所述,﹣2<a≤1或a≥2.
即实数a的取值范围为(﹣2,1]∪[2,+∞).
【解析】依题意,可分别求得p真、q真时m的取值范围,再由p∨q为真,而p∧q为假求得实数a的取值范围即可.
【考点精析】利用复合命题的真假对题目进行判断即可得到答案,需要熟知“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.
练习册系列答案
相关题目