题目内容
【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若m=﹣1求A∩B;
(2)若A∩B=,求实数m的取值范围.
【答案】
(1)解:m=﹣1时,集合B={x|﹣2<x<2}.
∵A={x|1<x<3},
∴A∩B={x|1<x<2}
(2)解:若A∩B=,得
① 若2m≥1﹣m,即 时,B=,符合题意;
②若2m<1﹣m,即 时,需 或
得 或,即 .
综上知m≥0
【解析】(1)根据交集的定义即可求出,(2)分类讨论,即可求出m的范围.
【考点精析】解答此题的关键在于理解集合的交集运算的相关知识,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.
练习册系列答案
相关题目