题目内容
4.若tanα=2tan$\frac{π}{5}$,则$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$=3.分析 利用三角恒等变换化简要求的式子,可得结果.
解答 解:∵tanα=2tan$\frac{π}{5}$,则$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$=$\frac{cosαcos\frac{3π}{10}+sinαsin\frac{3π}{10}}{sinαcos\frac{π}{5}-cosαsin\frac{π}{5}}$=$\frac{cos\frac{3π}{10}+tanα•sin\frac{3π}{10}}{tanα•cos\frac{π}{5}-sin\frac{π}{5}}$=$\frac{cos\frac{3π}{10}+2\frac{sin\frac{π}{5}}{cos\frac{π}{5}}•sin\frac{3π}{10}}{2tan\frac{π}{5}•cos\frac{π}{5}-sin\frac{π}{5}}$
=$\frac{cos\frac{3π}{10}+2tan\frac{π}{5}sin\frac{3π}{10}}{2sin\frac{π}{5}-sin\frac{π}{5}}$=$\frac{cos\frac{π}{5}cos\frac{3π}{10}+2sin\frac{π}{5}•sin\frac{3π}{10}}{sin\frac{π}{5}•cos\frac{π}{5}}$=$\frac{cos(\frac{3π}{10}-\frac{π}{5})+sin\frac{π}{5}•sin\frac{3π}{10}}{sin\frac{π}{5}•cos\frac{π}{5}}$
=$\frac{cos\frac{π}{10}-\frac{1}{2}[cos(\frac{3π}{10}-\frac{π}{5})-cos(\frac{3π}{10}+\frac{π}{5})]}{\frac{1}{2}sin\frac{2π}{5}}$=$\frac{\frac{3}{2}cos\frac{π}{10}}{\frac{1}{2}sin(\frac{π}{2}-\frac{π}{10})}$=3,
故答案为:3.
点评 本题主要考查三角恒等变换及化简求值,属于中档题.
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |