题目内容

4.若tanα=2tan$\frac{π}{5}$,则$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$=3.

分析 利用三角恒等变换化简要求的式子,可得结果.

解答 解:∵tanα=2tan$\frac{π}{5}$,则$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$=$\frac{cosαcos\frac{3π}{10}+sinαsin\frac{3π}{10}}{sinαcos\frac{π}{5}-cosαsin\frac{π}{5}}$=$\frac{cos\frac{3π}{10}+tanα•sin\frac{3π}{10}}{tanα•cos\frac{π}{5}-sin\frac{π}{5}}$=$\frac{cos\frac{3π}{10}+2\frac{sin\frac{π}{5}}{cos\frac{π}{5}}•sin\frac{3π}{10}}{2tan\frac{π}{5}•cos\frac{π}{5}-sin\frac{π}{5}}$
=$\frac{cos\frac{3π}{10}+2tan\frac{π}{5}sin\frac{3π}{10}}{2sin\frac{π}{5}-sin\frac{π}{5}}$=$\frac{cos\frac{π}{5}cos\frac{3π}{10}+2sin\frac{π}{5}•sin\frac{3π}{10}}{sin\frac{π}{5}•cos\frac{π}{5}}$=$\frac{cos(\frac{3π}{10}-\frac{π}{5})+sin\frac{π}{5}•sin\frac{3π}{10}}{sin\frac{π}{5}•cos\frac{π}{5}}$ 
=$\frac{cos\frac{π}{10}-\frac{1}{2}[cos(\frac{3π}{10}-\frac{π}{5})-cos(\frac{3π}{10}+\frac{π}{5})]}{\frac{1}{2}sin\frac{2π}{5}}$=$\frac{\frac{3}{2}cos\frac{π}{10}}{\frac{1}{2}sin(\frac{π}{2}-\frac{π}{10})}$=3,
故答案为:3.

点评 本题主要考查三角恒等变换及化简求值,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网