搜索
题目内容
已知三个函数模型:
,
,
,当
,随
的增大,三个函数中的增长速度越来越快的是( )
A.
B.
C.
D.
试题答案
相关练习册答案
C
解:因为三个函数模型:
,
,
,当
中,指数函数是爆炸型增长,因此选C.
练习册系列答案
新课程复习与提高系列答案
新课程初中学习能力自测系列答案
新课标中考直通车系列答案
新课标教材同步导练系列答案
新课标新疆中考导航系列答案
新课标综合测试卷系列答案
新课标青海中考系列答案
节节高大象出版社系列答案
新课标互动同步训练系列答案
新课标互动同步系列答案
相关题目
某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.
汕头二中拟建一座长
米,宽
米的长方形体育馆.按照建筑要求,每隔
米(
,
为正常数)需打建一个桩位,每个桩位需花费
万元(桩位视为一点且打在长方形的边上),桩位之间的
米墙面需花
万元,在不计地板和天花板的情况下,当
为何值时,所需总费用最少?
第(1)小题满分6分,第(2)小题满分8分.
由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱。1个单位的固体碱在水中逐步溶化,水中的碱浓度
与时间
的关系,可近似地表示为
。只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用。
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.
已知函数
的定义域为
,部分对应值如下表,
的导函数图像如下图所示,若
,则
的取值范围为
▲
.
已知
在
上为奇函数,且
在
上为增函数,
,则不等式
的解集为
_______.
设
是定义在正整数集上的函数,且
满足:“当
成立时,总可推出
成立”,那么,下列命题总成立的是( )
A.若
成立,则
成立
B.若
成立,则当
时,均有
成立
C.若
成立,则
成立
D.若
成立,则当
时,均有
成立
已知函数
,若
,则
A.
B.
C.
D.
若
,则
的表达式为( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总