题目内容
【题目】某重点中学将全部高一学生分成两个成绩相当(成绩的均值、方差都相同)的级部, 级部采用传统形式的教学方式, 级部采用新型的基于信息化的自主学习教学方式.为了解教学效果,期末考试后分别从两个级部中各随机抽取30名学生的数学成绩进行统计,做出茎叶图如下,记成绩不低于127分者为“优秀”.
(1)在级部样本的30个个体中随机抽取1个,求抽出的为“优秀”的概率;
(2)由以上数据填写下面列联表,并判断是否有的把握认为“优秀”与教学方式有关.
附表:
附: .
【答案】(1).(2)见解析.
【解析】试题分析:(1)根据古典概型的计算公式得到优秀”的共有13个, 级部样本有30个个体,则;(2)根据公式得到 ,可得到结果。
解析:
(1)级部样本的30个个体中为“优秀”的共有13个,
设在级部样本的30个个体中随机抽取1个,抽出的为“优秀”的记为事件,则.
(2)
级部|||是否优秀 | 优 | 不优 | 总计 |
A | 4 | 26 | 30 |
B | 13 | 17 | 30 |
总计 | 17 | 43 | 60 |
假设“优秀”与教学方式无关,根据列联表中的数据,得到
.
因此有的把握认为“优秀”与教学方式有关系.
【题目】2012年中华人民共和国环境保护部批准《环境空气质量标准》为国家环境质量标准,该标准增设和调整了颗粒物、二氧化氮、铅、笨等的浓度限值,并从2016年1月1日起在全国实施.空气质量的好坏由空气质量指数确定,空气质量指数越高,代表空气污染越严重,某市对市辖的某两个区加大了对空气质量的治理力度,从2015年11月1日起监测了100天的空气质量指数,并按照空气质量指数划分为:指标小于或等于115为通过,并引进项目投资.大于115为未通过,并进行治理.现统计如下.
空气质量指数 | (0,35] | [35,75] | (75,115] | (115,150] | (150,250] | >250 |
空气质量类别 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
甲区天数 | 13 | 20 | 42 | 20 | 3 | 2 |
乙区天数 | 8 | 32 | 40 | 16 | 2 | 2 |
(1)以频率值作为概率值,求甲区和乙区通过监测的概率;
(2)对于甲区,若通过,引进项目可增加税收40(百万元),若没通过监测,则治理花费5(百万元);对于乙,若通过,引进项目可增加税收50(百万元),若没通过监测,则治理花费10(百万元)..在(1)的前提下,记X为通过监测,引进项目增加的税收总额,求随机变量X的分布列和数学期望.