题目内容
【题目】如图1,四边形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,过点C作CO⊥AB,垂足为O,将△OBC沿CO折起,如图2使得平面CBO与平面AOCD所成的二面角的大小为θ(0<θ<π),E,F分别为BC,AO的中点
(1)求证:EF∥平面ABD
(2)若θ= ,求二面角F﹣BD﹣O的余弦值.
【答案】
(1)证明:过点E作EH∥BD,交CD于点H,连结HF,
则H为CD中点,∴HF∥AD
∵AD平面ABD,HF平面ABD,
∴HF∥平面ABD,
同理,EH∥平面ABD,
∵EH∩HF=H,∴平面EHF∥平面ABD,
∵EF平面EHF,∴EF∥平面ABD
(2)解:由题得平面CBO与平面AOCD所成二面角的平面角为∠BOA=θ,
连结BF,∵θ= ,OB=2,OF=1,∴BF⊥AO,
以点F为坐标原点,以FO,FH,FB分别为x,y,z轴,建立空间直角坐标系,
则F(0,0,0),B(0,0, ),D(﹣1,2,0),O(1,0,0),
设平面FBD的法向量 =(x,y,z),
则 ,取x=2,解得 =(2,﹣1,0)
同理得平面BDO的一个法向量 =( ,1),
设二面角F﹣BD﹣O的平面角为α,
cosα= = = ,
∴二面角F﹣BD﹣O的余弦值为 .
【解析】(1)过点E作EH∥BD,交CD于点H,连结HF,推导出平面EHF∥平面ABD,由此能证明EF∥平面ABD.(2)由题得平面CBO与平面AOCD所成二面角的平面角为∠BOA=θ,连结BF,以点F为坐标原点,以FO,FH,FB分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角F﹣BD﹣O的余弦值.
【考点精析】掌握直线与平面平行的判定是解答本题的根本,需要知道平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.
【题目】2016年美国总统大选过后,有媒体从某公司的全体员工中随机抽取了200人,对他们的投票结果进行了统计(不考虑弃权等其他情况),发现支持希拉里的一共有95人,其中女员工55人,支持特朗普的男员工有60人.
(Ⅰ)根据已知条件完成下面的2×2列联表:据此材料,是否有95%的把握认为投票结果与性别有关?
支持希拉里 | 支持特朗普 | 合计 | |
男员工 | |||
女员工 | |||
合计 |
(Ⅱ)若从该公司的所有男员工中随机抽取3人,记其中支持特朗普的人数为X,求随机变量X的分布列和数学期望.(用相应的频率估计概率)
附:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)