题目内容
【题目】某校在高二年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高二年级学生中随机抽取180名学生,其中男生105名;在这180名学生中选择社会科学类的男生、女生均为45名.
(1)根据抽取的180名学生的调查结果,完成下面的2×2列联表.
(2)判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?
选择自然科学类 | 选择社会科学类 | 合计 | |
男生 | |||
女生 | |||
合计 |
参考公式:,其中.
P(K2≥k0) | 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)见解析(2)能在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关.
【解析】
(1)根据题意计算男、女生选修社会科学类与自然科学类的人数,填写列联表即可;
(2)计算K 2,对照临界值得出结论.
解:(1)根据统计数据,可得2×2列联表如下:
选择自然科学类 | 选择社会科学类 | 合计 | |
男生 | 60 | 45 | 105 |
女生 | 30 | 45 | 75 |
合计 | 90 | 90 | 180 |
(2)则K2的观测值为,
所以能在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关.
【题目】今年学雷锋日,某中学计划从高中三个年级选派4名教师和若干名学生去当学雷锋文明交通宣传志愿者,用分层抽样法从高中三个年级的相关人员中抽取若干人组成文明交通宣传小组,学生的选派情况如下:
年级 | 相关人数 | 抽取人数 |
高一 | 99 | |
高二 | 27 | |
高三 | 18 | 2 |
(Ⅰ)求,的值;
(Ⅱ)若从选派的高一、高二、高三年级学生中抽取3人参加文明交通宣传,求他们中恰好有1人是高三年级学生的概率;
(Ⅲ)若4名教师可去、、三个学雷锋文明交通宣传点进行文明交通宣传,其中每名教师去、、三个文明交通宣传点是等可能的,且各位教师的选择相互独立.记到文明交通宣传点的人数为,求随机变量的分布列和数学期望.