题目内容
【题目】在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,AB=AP=3,AD=PB=2,E为线段AB上一点,且AE︰EB=7︰2,点F、G分别为线段PA、PD的中点.
(1)求证:PE⊥平面ABCD;
(2)若平面EFG将四棱锥P-ABCD分成左右两部分,求这两部分的体积之比.
【答案】(1)见解析;(2)
【解析】
(1)证明PE⊥AB,利用平面PAB⊥平面ABCD,即可证明:PE⊥平面ABCD;
(2)平面EFG将四棱锥P﹣ABCD分成左右两部分,利用分割法求体积,即可求这两部分的体积之比.
证明:在等腰△APB中,得,
则由余弦定理可得,,∴,
∴PE2+BE2=4=PB2,∴PE⊥AB,
∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,
∴PE⊥平面ABCD.
(2)解:设平面EFG与棱CD交于点N,连接EN,因为GF∥AD,所以GF∥平面ABCD,从而可得EN∥AD.
延长FG至点M,使GM=GF,连接DM,MN,则AFE﹣DMN为直三棱柱,
∵F到AE的距离为,,
∴,
∴,,
∴,
又,
∴.
【题目】1766年;人类已经发现的太阳系中的行星有金星、地球、火星、木星和土星.德国的一位中学教师戴维一提丢斯在研究了各行星离太阳的距离(单位:AU,AU是天文学中计量天体之间距离的一种单位)的排列规律后,预测在火星和木星之间应该还有一颗未被发现的行星存在,并按离太阳的距离从小到大列出了如下表所示的数据:
行星编号(x) | 1(金星) | 2(地球) | 3(火星) | 4( ) | 5(木星) | 6(土星) |
离太阳的距离(y) | 0.7 | 1.0 | 1.6 | 5.2 | 10.0 |
受他的启发,意大利天文学家皮亚齐于1801年终于发现了位于火星和木星之间的谷神星.
(1)为了描述行星离太阳的距离y与行星编号之间的关系,根据表中已有的数据画出散点图,并根据散点图的分布状况,从以下三种模型中选出你认为最符合实际的一种函数模型(直接给出结论即可);
①;②;③.
(2)根据你的选择,依表中前几组数据求出函数解析式,并用剩下的数据检验模型的吻合情况;
(3)请用你求得的模型,计算谷神星离太阳的距离.