题目内容

(2011•洛阳一模)已知函数f(x)=lnx+x2-ax(a∈R).
(1)若f(x)在其定义域上为增函数,求a的取值范围;
(2)若f(x)存在极值,试求a的取值范围,并证明所有极值之和小于-3+ln
1
2

(3)设an=1+
1
n
(n∈N*),求证:3(a1+a2+…+an)-(a12+a22+…+an2)<ln(n+1)+2n.
分析:(1)f(x)在其定义域((0,+∞)上为增函数,即f′(x)=
1
x
+2x
-a,x>0,分离参数a,转化为a≤
1
x
+2x
,x>0恒成立.
(2)由已知,f′(x)=0在(0,+∞)内有穿越型的零点,即2x2-ax+1=0在(0,+∞)内有穿越型的零点,
构造g(x)=2x2-ax+1,利用二次函数性质求解.
(3)令a=3,则f(x)=lnx+x2-3x,f(x)在(1,+∞)上为增函数,所以f(x)>f(1)=-2,即lnx+x2-3x>-2,3x-x2<lnx+2,利用此规律进行证明.
解答:解:(1)f′(x)=
1
x
+2x
-a,x>0,
由已知,f′(x)>0对x>恒成立,
即a≤
1
x
+2x
,x>0,由于
1
x
+2x
≥2
1
x
×2x
=2
2
,所以a≤2
2

(2)由已知,f′(x)=0在(0,+∞)内有穿越型的零点,即2x2-ax+1=0在(0,+∞)内有穿越型的零点,
记g(x)=2x2-ax+1,由于g(0)=0,所以
△=a2-8>0
a
4
>0
,解得a>2
2

设f(x)的两个极值点为x1,x2,则x1+x2=
a
2
,x1x2=
1
2
,∴f(x1)+f(x2)=(lnx1+x12-ax1)+(lnx2+x22-ax2
=lnx1x2-a(x1+x2)+(x1+x22-2x1x2
=ln
1
2
-
a2
2
+
a2
4
-1=-
a2
4
-1+ln
1
2
<-3+ln
1
2
,所以所有极值之和小于-3+ln
1
2

(3)令a=3,则f(x)=lnx+x2-3x,x>1,f′(x)=
2x3-3x+1
x
=
(x-1)(2x-1)
x
>0,
即f(x)在(1,+∞)上为增函数,所以f(x)>f(1)=-2,
即lnx+x2-3x>-2,3x-x2<lnx+2,
∴3(a1+a2+…+an)-(a12+a22+…+an2)<ln((a1a2…an)+2n=ln(n+1)+2n.
点评:本题考查了利用导数与单调性的关系,不等式的证明,训练了利用分离变量求参数的取值范围,考查了学生的转化构造、计算运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网