题目内容
【题目】四棱锥中,面,底面是菱形,且,,过点作直线,为直线上一动点.
(1)求证:;
(2)当面面时,求三棱锥的体积.
【答案】(1)证明见解析;(2).
【解析】分析:(1)由平面得,又在菱形中有,故得平面,于是得到.(2)结合题意可得平面,故.根据面面得到,然后根据几何图形的计算得到,于是,,又,由此可得所求的三棱锥的体积.
详解:(1)∵,
∴直线确定一平面.
∵平面,平面,
∴.
由题意知直线在面上的射影为,
又在菱形中有,,
∴平面,
∵平面,
∴.
(2)由题意得和都是以为底的等腰三角形,设和的交点为,
连接、,则,,
又,
∴平面.
又平面面,平面 面,
∴面,
∴.
在菱形中,,,
∴.
在中,.
在中,设,则.
∴在中,,
又在直角梯形中,,
故,
解得,即.
∴,
∴.
练习册系列答案
相关题目
【题目】为了调查中学生每天玩游戏的时间是否与性别有关,随机抽取了男、女学生各50人进行调查,根据其日均玩游戏的时间绘制了如下的频率分布直方图.
(1)求所调查学生日均玩游戏时间在分钟的人数;
(2)将日均玩游戏时间不低于60分钟的学生称为“游戏迷”,已知“游戏迷”中女生有6人;
①根据已知条件,完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别关系;
非游戏迷 | 游戏迷 | 合计 | |
男 | |||
女 | |||
合计 |
②在所抽取的“游戏迷”中按照分层抽样的方法抽取10人,再在这10人中任取9人进行心理干预,求这9人中男生全被抽中的概率.
附:(其中为样本容量).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |