题目内容
【题目】已知数列满足:
,其中
.
(1)求证:数列是等比数列;
(2)令,求数列
的最大项.
【答案】(1)详见解析;(2)最大项为.
【解析】
试题(1)首先根据已知等式,令
,可得
,再根据已知等式可得
,将两式相减,即可得到数列
的一个递推公式,只需验证将此递推公式变形得到形如
的形式,从可证明数列
是等比数列;(2)由(1)可得
,从而
,因此要求数列
的最大项,可以通过利用作差法判断数列
的单调性来求得:
,
当时,
,即
;当
时,
; 当
时,
,即
,因此数列
的最大项为
.
试题解析:(1)当时,
,∴
,
又∵,
∴,即
,∴
.
又∵,∴数列
是首项为
,公比为
的等比数列;
(2)由(1)知,,
∴, ∴
,
当时,
,即
,
当时,
,
当时,
,即
,
∴数列的最大项为
,
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目