题目内容

【题目】已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)

【答案】
(1)

由a≥3,故x≤1时,

x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;

当x>1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),

则等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围是(2,2a)


(2)

(1)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,

则f(x)min=f(1)=0,g(x)min=g(a)=﹣a2+4a﹣2.

由﹣a2+4a﹣2=0,解得a=2+ (负的舍去),

由F(x)的定义可得m(a)=min{f(1),g(a)},

即m(a)=


(3)

当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2);

当2<x≤6时,F(x)≤g(x)≤max{g(2),g(6)}

=max{2,34﹣8a}=max{F(2),F(6)}.

则M(a)=


【解析】(1)由a≥3,讨论x≤1时,x>1,去掉绝对值,化简x2﹣2ax+4a﹣2﹣2|x﹣1|,判断符号,即可得到F(x)=x2﹣2ax+4a﹣2成立的x的取值范围;(2)(1)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,求得f(x)和g(x)的最小值,再由新定义,可得F(x)的最小值;(2)分别对当0≤x≤2时,当2<x≤6时,讨论F(x)的最大值,即可得到F(x)在[0,6]上的最大值M(a).本题考查新定义的理解和运用,考查分类讨论的思想方法,以及二次函数的最值的求法,不等式的性质,考查化简整理的运算能力,属于中档题.
【考点精析】根据题目的已知条件,利用函数的最值及其几何意义的相关知识可以得到问题的答案,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网