题目内容
已知数列{an}满足a 1=
,且对任意n∈N*,都有
=
.
(1)求证:数列{
}为等差数列,并求{an}的通项公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn<
.
2 |
5 |
an |
an+1 |
4an+2 |
an+1+2 |
(1)求证:数列{
1 |
an |
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn<
4 |
15 |
分析:(1)由已知可得2an-2an+1=3anan+1,从而可得,
-
=
,从而可证数列列{
}是等差数列,可求an
(2)由已知可得bn=an•an+1=
•
=
(
-
),利用裂项即可求解数列的和
1 |
an+1 |
1 |
an |
3 |
2 |
1 |
an |
(2)由已知可得bn=an•an+1=
2 |
3n+2 |
2 |
3n+5 |
4 |
3 |
1 |
3n+2 |
1 |
3n+5 |
解答:证明:(1)∵
=
∴2an-2an+1=3anan+1
两边同时除以anan+1可得,
-
=
∴数列列{
}是以
=
为首项,以
为公差的等差数列,
∴
=
+
(n-1)=
∴an=
解:(2)bn=an•an+1=
•
=
(
-
)
∴Tn=b1+b2+b3+…+bn=
(
-
)<
an |
an+1 |
4an+2 |
an+1+2 |
∴2an-2an+1=3anan+1
两边同时除以anan+1可得,
1 |
an+1 |
1 |
an |
3 |
2 |
∴数列列{
1 |
an |
1 |
a1 |
5 |
2 |
3 |
2 |
∴
1 |
an |
5 |
2 |
3 |
2 |
3n+2 |
2 |
∴an=
2 |
3n+2 |
解:(2)bn=an•an+1=
2 |
3n+2 |
2 |
3n+5 |
4 |
3 |
1 |
3n+2 |
1 |
3n+5 |
∴Tn=b1+b2+b3+…+bn=
4 |
3 |
1 |
5 |
1 |
3n+5 |
4 |
15 |
点评:本题主要考查了利用数列的 递推公式求解数列的通项公式,数列的裂项求和方法的应用,属于基础试题
练习册系列答案
相关题目