题目内容
【题目】已知函数.
(1)判断函数的奇偶性,并说明理由;
(2)若对于任意的恒成立,求满足条件的实数m的最小值M .
(3)对于(2)中的M,正数a,b满足,证明: .
【答案】(1) 当时, 为偶函数, 当时,既不是奇函数也不是偶函数,理由见解析;(2)2;(3) 证明见解析.
【解析】
(1)对分类讨论,结合奇偶性的定义进行判断可得;
(2)将不等式转化为对任意的都成立,再构造函数,利用单调性求出最大值即可得到答案;
(3)由(2)知,所以,再根据变形可证.
(1)(i)当m=1时,,,
因为,
所以为偶函数;
(ii)当时,,,,,
所以既不是奇函数也不是偶函数.
(2) 对于任意的,即恒成立,
所以对任意的都成立,
设,
则为上的递减函数,
所以时,取得最大值1,
所以,即.
所以.
(3)证明: 由(2)知,
,所以,
,
,当且仅当时取等号,①
又
,当且仅当时取等号,②
由①②得,,
所以,
练习册系列答案
相关题目
【题目】交强险是车主必须为机动车购买的险种,若普通座以下私家车投保交强险的基准保费为元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况想联系,最终保费基准保费(与道路交通事故相联系的浮动比率),具体情况如下表:
为了解某一品牌普通座以下私家车的投保情况,随机抽取了辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:
类型 | ||||||
数量 |
若以这辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为( )
A. 元 B. 元 C. 元 D. 元