题目内容

【题目】已知数列{an}满足a1=1,a2n=n﹣an , a2n+1=an+1(n∈N*),则a1+a2+a3+…+a40等于(
A.222
B.223
C.224
D.225

【答案】C
【解析】解:∵a2n=n﹣an , a2n+1=an+1,
∴an=n﹣a2n , an=a2n+1﹣1,
∴a2n+1+a2n=n+1,
∴a1+(a2+a3)+(a4+a5)+…+(a38+a39
=1+2+3+…+20=
又a40=20﹣a20=20﹣(10﹣a10
=10+(5﹣a5)=15﹣(a2+1)
=14﹣a2=14﹣(1﹣a1)=14,
∴a1+a2+a3+…+a40=224.
故选:C.
【考点精析】掌握数列的通项公式是解答本题的根本,需要知道如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网