题目内容
观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为( )
A.76 | B.80 | C.86 | D.92 |
B
解析
练习册系列答案
相关题目
对于任意正整数n,定义“”如下:
当n是偶数时,,
当n是奇数时,
现在有如下四个命题:
①;
②;
③的个位数是0;
④的个位数是5。
其中正确的命题有( )
A.1个 | B.2个 | C.3个 | D.4个 |
已知△ABC中,,求证:.证明:∴,其中,画线部分是演绎推理的( )
A.小前提 | B.大前提 | C.结论 | D.三段论 |
用数学归纳法证明,从到,左边需要增乘的代数式为()
A. | B. | C. | D. |
下面四个判断中,正确的是( )
A.式子1+k+k2+…+kn(n∈N*)中,当n=1时式子值为1 |
B.式子1+k+k2+…+kn-1(n∈N*)中,当n=1时式子值为1+k |
C.式子1++…+(n∈N*)中,当n=1时式子值为1+ |
D.设f(x)=(n∈N*),则f(k+1)=f(k)+ |
设是定义在正整数集上的函数,且满足:“当成立时,总可推出成立”,那么,下列命题总成立的是 ( )
A.若成立,则成立 |
B.若成立,则当时,均有成立 |
C.若成立,则成立 |
D.若成立,则当时,均有成立 |
分析法是从要证明的结论出发,逐步寻求使结论成立的( )
A.充分条件 | B.必要条件 | C.充要条件 | D.等价条件 |
用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”的第二步
是( ).
A.假使n=2k+1时正确,再推n=2k+3正确 |
B.假使n=2k-1时正确,再推n=2k+1正确 |
C.假使n=k时正确,再推n=k+1正确 |
D.假使n≤k(k≥1),再推n=k+2时正确(以上k∈N+) |