题目内容

2.某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到所示联表:
做不到“光盘”能做到“光盘”
4510
3015
P(K2≥k)0.100.050.01
k2.7063.8416.635
附:K2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$,则下列结论正确的是(  )
A.在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关”
B.有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关”
C.在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”
D.有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关”

分析 通过图表读取数据,代入观测值公式计算,然后参照临界值表即可得到正确结论

解答 解:由2×2列联表得到a=45,b=10,c=30,d=15.
则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.
代入K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c))(b+d)}$,
得k2的观测值k=$\frac{100(675-300)^{2}}{55×45×75×25}$.
因为2.706<3.030<3.841.
所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.
即在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”
故选C.

点评 本题是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关,此题是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网