ÌâÄ¿ÄÚÈÝ
ÒÑÖªµãÁÐB1£¨1£¬y1£©£¬B2£¨2£¬y2£©£¬¡£¬Bn£¨n£¬yn£©£¬¡£¨n¡ÊN*£©Ë³´ÎΪֱÏßÉϵĵ㣬µãÁÐA1£¨x1£¬0£©£¬A2£¨x2£¬0£©£¬¡£¬An£¨xn£¬0£©£¬¡£¨n¡ÊN*£©Ë³´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÈÎÒâµÄn¡ÊN*£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®£¨¢ñ£©ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬xn+2-xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨¢ò£©ÎÊÊÇ·ñ´æÔÚµÈÑüÖ±½ÇÈý½ÇÐÎAnBnAn+1£¿Çë˵Ã÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨¢ñ£©ÓɵãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬ÔòÓÐ|AnBn|=|An+1Bn|µÃµ½xn+1+xn=2n£¬´Ó¶øÓÐxn+2+xn+1=2£¨n+1£©Á½Ê½×÷²îÇó½â£®
£¨¢ò£©¼ÙÉè´æÔÚµÈÑüÖ±½ÇÈý½ÇÐÎAnBnAn+1£¬£®ÔÚRt¡÷AnBnAn+1ÖУ¬£®ÓÉnΪÕýÆæÊýʱ£¬|xn+1-xn|=2£¨1-a£©£¬¹ÊÓУ¬¼´¼´0£¼n£¼4£®n=1£¬3ʹµÃÈý½ÇÐÎAnBnAn+1ΪµÈÑüÖ±½ÇÈý½ÇÐΣ®µ±nΪÕýżÊýʱ£¬|xn+1-xn|ÓУ¬¼´£¬µ±n=2ʱ£¬Ê¹µÃÈý½ÇÐÎAnBnAn+1ΪµÈÑüÖ±½ÇÈý½ÇÐΣ®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒâµÃ£¬An£¨xn£¬0£©£¬An+1£¨xn+1£¬0£©£¬
¡ßµãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬
¡à|AnBn|=|An+1Bn|£¬¼´
µÃxn2-2nxn=xn+12-2nxn+1⇒£¨xn+1-xn£©£¨xn+1+xn£©=2n£¨xn+1-xn£©
ÓÖ¡ßxn+1¡Ùxn£¬¡àxn+1+xn=2n£¬¢Ù
Ôòxn+2+xn+1=2£¨n+1£©¢Ú
ÓÉ¢Ú-¢ÙµÃ£¬xn+2-xn=2£¬¼´xn+2-xnÊdz£Êý£®£¨6·Ö£©
¼´ËùÁÐ{x2k-1}£¬{x2k}£¨k¡ÊN*£©¶¼ÊǵȲîÊýÁУ®
£¨×¢£º¿ÉÒÔÖ±½ÓÓÉͼÏóµÃµ½£¬¼´xn+xn+1=2n£¬£¨n¡ÊN*£©£©
µ±nΪÕýÆæÊýʱ£¬£¬
µ±nΪÕýżÊýʱ£¬ÓÉx2+x1=2µÃ£¬x2=2-a£¬¹Ê£¬
¡à£®£¨8·Ö£©
£¨¢ò£©¼ÙÉè´æÔÚµÈÑüÖ±½ÇÈý½ÇÐÎAnBnAn+1£¬ÓÉÌâÒâ¡ÏAnBnAn+1=90°£®
ÔÚRt¡÷AnBnAn+1ÖУ¬£®£¨10·Ö£©
µ±nΪÕýÆæÊýʱ£¬xn=a+n-1£¬xn+1=n+1-a£¬
¡à|xn+1-xn|=|n+1-a-a-n+1|=|2-2a|=2£¨1-a£©£¬¹ÊÓУ¬¼´£¬
ÓÖ¡ß0£¼a£¼1£¬¡à0£¼1-a£¼1£¬¡à£¬¼´0£¼n£¼4£¬
¡àµ±n=1£¬3ʱ£¬Ê¹µÃÈý½ÇÐÎAnBnAn+1ΪµÈÑüÖ±½ÇÈý½ÇÐΣ®£¨12·Ö£©
µ±nΪÕýżÊýʱ£¬xn=n-a£¬xn+1=a+n+1-1=a+n£¬
¡à|xn+1-xn|=|a+n-n+a|=|2a|=2a£¬¹ÊÓУ¬¼´£¬
ÓÖ¡ß0£¼a£¼1£¬¡à£¬¼´0£¼n£¼4£¬
¡àµ±n=2ʱ£¬Ê¹µÃÈý½ÇÐÎAnBnAn+1ΪµÈÑüÖ±½ÇÈý½ÇÐΣ®£¨14·Ö£©
×ÛÉÏËùÊö£¬µ±n=1£¬2£¬3ʱ£¬Ê¹µÃÈý½ÇÐÎAnBnAn+1ΪµÈÑüÖ±½ÇÈý½ÇÐΣ®£¨16·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é½âÎö¼¸ºÎÓëÊýÁеÄ×ÛºÏÎÊÌ⣬Éæ¼°µ½ÇóÊýÁеÄͨÏʽ£¬Á½µã¼äµÄ¾àÀ빫ʽÒÔ¼°·ÖÀàÌÖÂÛ£¬ÊýÐνáºÏµÈ˼Ï룮
£¨¢ò£©¼ÙÉè´æÔÚµÈÑüÖ±½ÇÈý½ÇÐÎAnBnAn+1£¬£®ÔÚRt¡÷AnBnAn+1ÖУ¬£®ÓÉnΪÕýÆæÊýʱ£¬|xn+1-xn|=2£¨1-a£©£¬¹ÊÓУ¬¼´¼´0£¼n£¼4£®n=1£¬3ʹµÃÈý½ÇÐÎAnBnAn+1ΪµÈÑüÖ±½ÇÈý½ÇÐΣ®µ±nΪÕýżÊýʱ£¬|xn+1-xn|ÓУ¬¼´£¬µ±n=2ʱ£¬Ê¹µÃÈý½ÇÐÎAnBnAn+1ΪµÈÑüÖ±½ÇÈý½ÇÐΣ®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒâµÃ£¬An£¨xn£¬0£©£¬An+1£¨xn+1£¬0£©£¬
¡ßµãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬
¡à|AnBn|=|An+1Bn|£¬¼´
µÃxn2-2nxn=xn+12-2nxn+1⇒£¨xn+1-xn£©£¨xn+1+xn£©=2n£¨xn+1-xn£©
ÓÖ¡ßxn+1¡Ùxn£¬¡àxn+1+xn=2n£¬¢Ù
Ôòxn+2+xn+1=2£¨n+1£©¢Ú
ÓÉ¢Ú-¢ÙµÃ£¬xn+2-xn=2£¬¼´xn+2-xnÊdz£Êý£®£¨6·Ö£©
¼´ËùÁÐ{x2k-1}£¬{x2k}£¨k¡ÊN*£©¶¼ÊǵȲîÊýÁУ®
£¨×¢£º¿ÉÒÔÖ±½ÓÓÉͼÏóµÃµ½£¬¼´xn+xn+1=2n£¬£¨n¡ÊN*£©£©
µ±nΪÕýÆæÊýʱ£¬£¬
µ±nΪÕýżÊýʱ£¬ÓÉx2+x1=2µÃ£¬x2=2-a£¬¹Ê£¬
¡à£®£¨8·Ö£©
£¨¢ò£©¼ÙÉè´æÔÚµÈÑüÖ±½ÇÈý½ÇÐÎAnBnAn+1£¬ÓÉÌâÒâ¡ÏAnBnAn+1=90°£®
ÔÚRt¡÷AnBnAn+1ÖУ¬£®£¨10·Ö£©
µ±nΪÕýÆæÊýʱ£¬xn=a+n-1£¬xn+1=n+1-a£¬
¡à|xn+1-xn|=|n+1-a-a-n+1|=|2-2a|=2£¨1-a£©£¬¹ÊÓУ¬¼´£¬
ÓÖ¡ß0£¼a£¼1£¬¡à0£¼1-a£¼1£¬¡à£¬¼´0£¼n£¼4£¬
¡àµ±n=1£¬3ʱ£¬Ê¹µÃÈý½ÇÐÎAnBnAn+1ΪµÈÑüÖ±½ÇÈý½ÇÐΣ®£¨12·Ö£©
µ±nΪÕýżÊýʱ£¬xn=n-a£¬xn+1=a+n+1-1=a+n£¬
¡à|xn+1-xn|=|a+n-n+a|=|2a|=2a£¬¹ÊÓУ¬¼´£¬
ÓÖ¡ß0£¼a£¼1£¬¡à£¬¼´0£¼n£¼4£¬
¡àµ±n=2ʱ£¬Ê¹µÃÈý½ÇÐÎAnBnAn+1ΪµÈÑüÖ±½ÇÈý½ÇÐΣ®£¨14·Ö£©
×ÛÉÏËùÊö£¬µ±n=1£¬2£¬3ʱ£¬Ê¹µÃÈý½ÇÐÎAnBnAn+1ΪµÈÑüÖ±½ÇÈý½ÇÐΣ®£¨16·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é½âÎö¼¸ºÎÓëÊýÁеÄ×ÛºÏÎÊÌ⣬Éæ¼°µ½ÇóÊýÁеÄͨÏʽ£¬Á½µã¼äµÄ¾àÀ빫ʽÒÔ¼°·ÖÀàÌÖÂÛ£¬ÊýÐνáºÏµÈ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿