ÌâÄ¿ÄÚÈÝ
ÒÑÖªµãÁÐB1£¨1£¬y1£©¡¢B2£¨2£¬y2£©¡¢¡¡¢Bn£¨n£¬yn£©£¨n¡ÊN£©Ë³´ÎΪһ´Îº¯Êýy=
x+
ͼÏóÉϵĵ㣬µãÁÐA1£¨x1£¬0£©¡¢A2£¨x2£¬0£©¡¢¡¡¢An£¨xn£¬0£©£¨n¡ÊN£©Ë³´ÎΪxÖáÕý°ëÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÓÚÈÎÒân¡ÊN£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒ»¸ö¶¥½ÇµÄ¶¥µãΪBnµÄµÈÑüÈý½ÇÐΣ®
£¨1£©ÇóÊýÁÐ{yn}2µÄͨÏʽ£¬²¢Ö¤Ã÷{yn}3ÊǵȲîÊýÁУ»
£¨2£©Ö¤Ã÷xn+2-xn5Ϊ³£Êý£¬²¢Çó³öÊýÁÐ{xn}6µÄͨÏʽ£»
£¨3£©ÎÊÉÏÊöµÈÑüÈý½ÇÐÎAn8Bn9An+110ÖУ¬ÊÇ·ñ´æÔÚÖ±½ÇÈý½ÇÐΣ¿ÈôÓУ¬Çó³ö´ËʱaÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
1 |
4 |
1 |
12 |
£¨1£©ÇóÊýÁÐ{yn}2µÄͨÏʽ£¬²¢Ö¤Ã÷{yn}3ÊǵȲîÊýÁУ»
£¨2£©Ö¤Ã÷xn+2-xn5Ϊ³£Êý£¬²¢Çó³öÊýÁÐ{xn}6µÄͨÏʽ£»
£¨3£©ÎÊÉÏÊöµÈÑüÈý½ÇÐÎAn8Bn9An+110ÖУ¬ÊÇ·ñ´æÔÚÖ±½ÇÈý½ÇÐΣ¿ÈôÓУ¬Çó³ö´ËʱaÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÀûÓõãÁÐB1£¨1£¬y1£©¡¢B2£¨2£¬y2£©¡¢¡¡¢Bn£¨n£¬yn£©£¨n¡ÊN£©Ë³´ÎΪһ´Îº¯Êýy=
x+
£¬¿ÉµÃÊýÁÐ{yn}µÄͨÏʽ£¬½ø¶øÓÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©¸ù¾Ý¡÷AnBnAn+1Óë¡÷An+1Bn+1An+2ΪµÈÑüÈý½ÇÐΣ¬¿ÉµÃ
£¬Á½Ê½Ïà¼õ£¬¼´¿ÉÇó³öÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©ÒªÊ¹¡÷AnBnAn+1Ϊֱ½ÇÈý½ÇÐΣ¬Ôòxn+1-xn=2(
+
)£¬¸ù¾Ý£¨2£©·ÖnΪÆæÊý¡¢Å¼Êýʱ£¬½øÐÐÌÖÂÛ£¬¿ÉÇó´ËʱaÖµ£®
1 |
4 |
1 |
12 |
£¨2£©¸ù¾Ý¡÷AnBnAn+1Óë¡÷An+1Bn+1An+2ΪµÈÑüÈý½ÇÐΣ¬¿ÉµÃ
|
£¨3£©ÒªÊ¹¡÷AnBnAn+1Ϊֱ½ÇÈý½ÇÐΣ¬Ôòxn+1-xn=2(
n |
4 |
1 |
12 |
½â´ð£º½â£º£¨1£©¡ßµãÁÐB1£¨1£¬y1£©¡¢B2£¨2£¬y2£©¡¢¡¡¢Bn£¨n£¬yn£©£¨n¡ÊN£©Ë³´ÎΪһ´Îº¯Êýy=
x+
¡àyn=
n+
¡àyn+1-yn=
¡à{yn}ÊǵȲîÊýÁУ»
£¨2£©¡ß¡÷AnBnAn+1Óë¡÷An+1Bn+1An+2ΪµÈÑüÈý½ÇÐÎ
¡à
£®¡àxn+2-xn=2
¡àxn=
£¨3£©ÒªÊ¹¡÷AnBnAn+1Ϊֱ½ÇÈý½ÇÐΣ¬Ôòxn+1-xn=2(
+
)
µ±nΪÆæÊýʱ£¬xn+1-xn=2£¨1-a£©£¬¡à2(
+
)=2(1-a)
¡àa=
-
(nΪÆæÊý£¬0£¼a£¼1)
n=1£¬µÃa=
£¬n=3µÃa=
£¬n¡Ý5£¬ÔòÎ޽⣻
µ±nΪżÊýʱ£¬Í¬ÀíµÃa=
(nΪżÊý£¬0£¼a£¼1)
n=2£¬µÃ a=
£¬n¡Ý4£¬ÔòÎ޽⣻
¡à´æÔÚÖ±½ÇÈý½ÇÐΣ¬´ËʱaֵΪ
£¬
£¬
1 |
4 |
1 |
12 |
¡àyn=
1 |
4 |
1 |
12 |
¡àyn+1-yn=
1 |
4 |
¡à{yn}ÊǵȲîÊýÁУ»
£¨2£©¡ß¡÷AnBnAn+1Óë¡÷An+1Bn+1An+2ΪµÈÑüÈý½ÇÐÎ
¡à
|
¡àxn=
|
£¨3£©ÒªÊ¹¡÷AnBnAn+1Ϊֱ½ÇÈý½ÇÐΣ¬Ôòxn+1-xn=2(
n |
4 |
1 |
12 |
µ±nΪÆæÊýʱ£¬xn+1-xn=2£¨1-a£©£¬¡à2(
n |
4 |
1 |
12 |
¡àa=
11 |
12 |
n |
4 |
n=1£¬µÃa=
2 |
3 |
1 |
6 |
µ±nΪżÊýʱ£¬Í¬ÀíµÃa=
1 |
12 |
n |
4 |
n=2£¬µÃ a=
7 |
12 |
¡à´æÔÚÖ±½ÇÈý½ÇÐΣ¬´ËʱaֵΪ
2 |
3 |
1 |
6 |
7 |
12 |
µãÆÀ£º±¾ÌâÒÔº¯ÊýΪÔØÌ壬¿¼²éÊýÁÐ֪ʶ£¬¿¼²éÊýÁеÄͨÏ¿¼²é·ÖÀàÌÖÂÛ˼Ï룬ÓнÏÇ¿µÄ×ÛºÏÐÔ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿